Skip to main content
Log in

Protein Crystallization Segmentation and Classification Using Subordinate Color Channel in Fluorescence Microscopy Images

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The accuracy of detecting protein crystals for fluorescence microscopy images is very critical for high throughput and automated systems. Although the trace fluorescent labeling method could highlight protein crystals, reflection and emission from the fluorescence dye is not always due to crystal regions. Therefore, the analysis of the peak wavelength in the emission spectra of a fluorophore may not always yield effective results. In this paper, we show that using the subordinate color intensity corresponding to longer wavelengths than the peak wavelength of the emission spectra could improve the accuracy of protein crystal detection. Hence, we have built a segmentation method based on the percentile intensity of the subordinate color for trace fluorescently labeled (TFL’d) protein crystallization trial images. Compared to using the dominant color channel, our segmentation method on subordinate color channel was able to reduce the misclassification rate of likely-leads or crystals as non-crystals by the percentage of from 9.71% to 2.02% depending on the classifier. Similarly, the accuracy of classifiers were increased by the percentage of from 1.77% to 5.53%. Our method reached around 94% accuracy while keeping misclassification of likely-leads and crystals as non-crystals below 1%. Moreover, to evaluate the generalizability of our method, we have conducted new wet lab experiments on two proteins, Concanavalin A (Con A) and Ab inorganic pyrophosphate (AbIPPase), and the misclassification rate was below 1%. Our experiments show that using the subordinate channel may be more helpful for TFL’d protein trial image classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Bern M, Goldberg D, Stevens R C, Kuhn P (2004) Automatic classification of protein crystallization images using a curve-tracking algorithm. J Appl Crystallogr 37(2):279–287. https://doi.org/10.1107/S0021889804001761

    Article  CAS  Google Scholar 

  2. Bruno A E, Charbonneau P, Newman J, Snell E H, So D R, Vanhoucke V, Watkins C J, Williams S, Wilson J (2018) Classification of crystallization outcomes using deep convolutional neural networks. PLOS one 13(6):e0198,883

    Article  Google Scholar 

  3. Cumbaa C A, Jurisica I (2010) Protein crystallization analysis on the world community grid. J Struct Funct Genomics 11(1):61–69. https://doi.org/10.1007/s10969-009-9076-9

    Article  CAS  Google Scholar 

  4. Dinc I, Dinc S, Sigdel M, Sigdel M, Pusey M, Aygun R (2014) Dt-binarize: A hybrid binarization method using decision tree for protein crystallization images. In: Proceedings of the 2014 int. conf. on image processing, computer vision, pattern recognition, pp 304–311

  5. Dinc I, Dinc S, Sigdel M, Sigdel M S, Pusey M L, Aygün R S (2017) Super-thresholding: Supervised thresholding of protein crystal images. IEEE/ACM Trans Comput Biol Bioinform 14(4):986–998. https://doi.org/10.1109/TCBB.2016.2542811

    Article  Google Scholar 

  6. Forsythe E, Achari A, Pusey M L (2006) Trace fluorescent labeling for high-throughput crystallography. Acta Crystallogr Section D 62(3):339–346. https://doi.org/10.1107/S0907444906000813

    Article  Google Scholar 

  7. Inc TFS (2018) Fluorescence spectraviewer. https://www.thermofisher.com/us/en/home.html

  8. Klijn ME, Hubbuch J (2019) Time-dependent multi-light-source image classification combined with automated multidimensional protein phase diagram construction for protein phase behavior analysis. Journal of pharmaceutical sciences

  9. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9 (1):62–66. https://doi.org/10.1109/TSMC.1979.4310076

    Article  Google Scholar 

  10. Pan S, Shavit G, Penas-Centeno M, Xu D H, Shapiro L, Ladner R, Riskin E, Hol W, Meldrum D (2006) Automated classification of protein crystallization images using support vector machines with scale-invariant texture and Gabor features. Acta Crystallogr Section D 62(3):271–279. https://doi.org/10.1107/S0907444905041648

    Article  Google Scholar 

  11. Po MJ, Laine AF (2008) Leveraging genetic algorithm and neural network in automated protein crystal recognition. In: 2008 30th annual int. conf. of the ieee engineering in medicine and biology society, pp 1926–1929. https://doi.org/10.1109/IEMBS.2008.4649564

  12. Pusey M, Barcena J, Morris M, Singhal A, Yuan Q, Ng J (2015) Trace fluorescent labeling for protein crystallization. Acta Crystallogr Section F 71(7):806–814. https://doi.org/10.1107/S2053230X15008626

    Article  CAS  Google Scholar 

  13. Sigdel M, Pusey M L, Aygun R S (2013) Real-time protein crystallization image acquisition and classification system. Crystal Growth & Design 13(7):2728–2736. https://doi.org/10.1021/cg3016029

    Article  CAS  Google Scholar 

  14. Sigdel M, Sigdel M, Dinc I, Dinc S, Pusey M, Aygun R (2014) Classification of protein crystallization trial images using geometric features. In: Proceedings of the 2014 int. conf. on image processing, computer vision, pattern recognition, pp 192–198

  15. Sigdel M, Pusey M L, Aygun R S (2015) Crystpro: Spatiotemporal analysis of protein crystallization images. Crystal growth & design 15(11):5254–5262

    Article  CAS  Google Scholar 

  16. Sigdel M, Dinc I, Sigdel M S, Dinc S, Pusey M L, Aygun R S (2017) Feature analysis for classification of trace fluorescent labeled protein crystallization images. BioData Mining 10(1):14. https://doi.org/10.1186/s13040-017-0133-9

    Article  Google Scholar 

  17. Sigdel M S, Sigdel M, Dinç S, Dinc I, Pusey M L, Aygün R S (2016) Focusall: Focal stacking of microscopic images using modified harris corner response measure. IEEE/ACM Trans Comput Biol Bioinform 13 (2):326–340. https://doi.org/10.1109/TCBB.2015.2459685

    Article  CAS  Google Scholar 

  18. Spraggon G, Lesley S A, Kreusch A, Priestle J P (2002) Computational analysis of crystallization trials. Acta Crystallogr Section D 58(11):1915–1923. https://doi.org/10.1107/S0907444902016840

    Article  Google Scholar 

  19. Tran T X, Aygun R S, Pusey M L (2017) Classifying protein crystallization trial images using subordinate color channel. In: 2017 IEEE int. conf. on bioinformatics and biomedicine (BIBM), vol 00, pp 1546–1553. https://doi.org/10.1109/BIBM.2017.8217890

  20. Tran T X, Pusey M L, Aygun R S (2018) Else-tree classifier for minimizing misclassification of biological data. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, pp 2301–2308

  21. Zhu X, Sun S, Bern M (2004) Classification of protein crystallization imagery. In: The 26th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, vol 1, pp 1628–1631. https://doi.org/10.1109/IEMBS.2004.1403493

Download references

Acknowledgment

This research was supported by National Institutes of Health (GM116283) grant. This paper is an extension of our previous work “T. X. Tran and R. S. Aygun and M. L. Pusey, Classifying protein crystallization trial images using subordinate color channel, in 2017 IEEE Int. Conf. on Bioinformatics and Biomedicine (BIBM), Nov. 2017, page 1546-1553, DOI 10.1109/BIBM.2017.8217890”. ⒸIEEE 2017. Reprinted, with permission from T. X. Tran and R. S. Aygun and M. L. Pusey, Classifying protein crystallization trial images using subordinate color channel, in 2017 IEEE Int. Conf. on Bioinformatics and Biomedicine (BIBM), Nov. 2017, page 1546-1553, DOI 10.1109/BIBM.2017.8217890.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Truong X. Tran.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tran, T.X., Pusey, M.L. & Aygun, R.S. Protein Crystallization Segmentation and Classification Using Subordinate Color Channel in Fluorescence Microscopy Images. J Fluoresc 30, 637–656 (2020). https://doi.org/10.1007/s10895-020-02500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-020-02500-7

Keywords

Navigation