Skip to main content
Log in

Generalized Benders’ Decomposition for topology optimization problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness) problems with discrete design variables to global optimality. We present the theoretical aspects of the method, including a proof of finite convergence and conditions for obtaining global optimal solutions. The method is also linked to, and compared with, an Outer-Approximation approach and a mixed 0–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Achtziger W., Kŏcvara M.: Structural topology optimization with eigenvalues. SIAM J. Optim. 18(4), 1129–1164 (2007)

    Article  Google Scholar 

  2. Achtziger W., Stolpe M.: Global optimization of truss topology with discrete bar areas—Part I: Theory of relaxed problems. Comput. Optim. Appl. 40(2), 247–280 (2007)

    Article  Google Scholar 

  3. Achtziger W., Stolpe M.: Truss topology optimization with discrete design variables—Guaranteed global optimality and benchmark examples. Struct. Multidiscipl. Optim. 34(1), 1–20 (2007)

    Article  Google Scholar 

  4. Anjos M., Vannelli A.: Computing globally optimal solutions for single-row layout problems using semidefinite programming and cutting planes. INFORMS J. Comput. 20(4), 611–617 (2008)

    Article  Google Scholar 

  5. Ben-Tal A., Nemirovski A.: Robust truss topology design via semidefinite programming. SIAM J. Optim. 7(4), 991–1016 (1997)

    Article  Google Scholar 

  6. Benders J.: Partitioning procedures for solving mixed-variables programming problems. Numerische Mathematik 4(1), 238–252 (1962)

    Article  Google Scholar 

  7. Bendsøe M., Sigmund O.: Topology Optimization: Theory, Methods and Applications, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  8. Bollapragada S., Ghattas O., Hooker J.: Optimal design of truss structures by logic-based branch and cut. Oper. Res. 49(1), 42–51 (2001)

    Article  Google Scholar 

  9. Brenner S., Scott L.: The mathematical theory of finite element methods. Springer, Berlin (1994)

    Google Scholar 

  10. Canto S.: Application of Benders’ decomposition to power plant preventive maintenance scheduling. Eur. J. Oper. Res. 184, 759–777 (2008)

    Article  Google Scholar 

  11. Codato G., Fischetti M.: Combinatorial Benders’ cuts for mixed-integer linear programming. Oper. Res. 54(4), 756–766 (2006)

    Article  Google Scholar 

  12. Costa A.: A survey on Benders decomposition applied to fixed-charge network analysis problems. Comput. Oper. Res. 32, 1429–1450 (2005)

    Article  Google Scholar 

  13. Craven B., Mond B.: Linear programming with matrix variables. Linear Algebra Appl. 38, 73–80 (1981)

    Article  Google Scholar 

  14. Datta B.: Numerical Linear Algebra and Applications. Brooks/Cole Publishing, Wisconsin (1995)

    Google Scholar 

  15. Deufhard P., Hohmann A.: Numerical Analysis in Modern Scientific Computing. Springer, Berlin (2003)

    Google Scholar 

  16. Duran M., Grossmann I.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)

    Article  Google Scholar 

  17. Geoffrion A.: Elements of large-scale mathematical programming: Part I: Concepts. Inst. Manag. Sci. 16(11), 652–675 (1970)

    Article  Google Scholar 

  18. Geoffrion A.: Elements of large-scale mathematical programming: Part II: Synthesis of Algorithms and Bibliography. Inst. Manag. Sci. 16(11), 676–691 (1970)

    Article  Google Scholar 

  19. Geoffrion A.: Duality in non linear programming: a simplified applications-oriented development. SIAM Rev. 13(1), 1–37 (1971)

    Article  Google Scholar 

  20. Geoffrion A.: Generalized Benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)

    Article  Google Scholar 

  21. Hiriart-Urruty J., Lemaréchal C.: Convex Analysis and Minimization Algorithms II. Springer, Berlin (1996)

    Google Scholar 

  22. ILOG Inc.: IBM ILOG CPLEX 9.1 Users Manual for CPLEX (2007)

  23. Kojima, M., Kojima, S., Hara, S.: Linear algebra for semidefinite programming. Tech. rep., Department of Mathematical and Computing Sciences, Tokyo Institute of Technology. Research Report B-290 (1994)

  24. Lazimy R.: Extension of the generalized Benders decomposition. Commun. Appl. Numer. Methods 6, 195–203 (1986)

    Article  Google Scholar 

  25. Leyffer S., Fletcher R.: Solving mixed-integer nonlinear programs by outer-approximation. Math. Program. 66(3), 327–349 (1994)

    Article  Google Scholar 

  26. Magnanti T., Magnanti T., Magnanti T.: Accelerating Benders decomposition: Algorithmic enhancement and model selection criteria. Oper Res. 29(3), 464–484 (1981)

    Article  Google Scholar 

  27. The MathWorks, Inc.: Matlab user manual version 7.1 (2005)

  28. Muñoz, E.: Global optimization for discrete topology design problems by generalized Benders’ decomposition. Ph.D. thesis, Department of Mathematics, Technical University of Denmark (2010)

  29. Rasmussen M., Stolpe M.: Global optimization of discrete truss topology design problems using a parallel cut-and-branch method. Comput. Struct. 86(13-14), 1527–1538 (2008)

    Article  Google Scholar 

  30. Rei W., Cordeau J., Gendreau M., Soriano P.: Accelerating Benders decomposition by local branching. INFORMS J. Comput. 21(2), 333–346 (2009)

    Article  Google Scholar 

  31. Sahinidis N., Grossman I.: Convergence properties of generalized Benders decomposition. Comput. Chem. Eng. 15, 481–491 (1991)

    Article  Google Scholar 

  32. Svanberg K.: Method of moving asymptotes—a new method for structural optimization. Int. J. Numer. Methods Eng. 24(2), 359–373 (1987)

    Article  Google Scholar 

  33. Svanberg K.: On the convexity and concavity of compliances. Struct. Multidiscip. Optim. 7(1–2), 42–46 (1994)

    Google Scholar 

  34. Svanberg K.: A class of globally convergent optimization methods based on conservative convex separable approximations.. SIAM J. Optim. 12(2), 555–573 (2002)

    Article  Google Scholar 

  35. Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  Google Scholar 

  36. Zhu Y., Kuno T.: Global optimization of non-convex MILP by a hybrid branch-and-bound and revised general Benders decomposition approach. Ind. Eng. Chem. Res. 42(3), 528–539 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Stolpe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, E., Stolpe, M. Generalized Benders’ Decomposition for topology optimization problems. J Glob Optim 51, 149–183 (2011). https://doi.org/10.1007/s10898-010-9627-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-010-9627-4

Keywords

Mathematics Subject Classification (2000)

Navigation