Skip to main content
Log in

From simulated annealing to stochastic continuation: a new trend in combinatorial optimization

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

Simulated annealing (SA) is a generic optimization method that is quite popular because of its ease of implementation and its global convergence properties. However, SA is widely reported to converge very slowly, and it is common practice to allow extra freedom in its design at the expense of losing global convergence guarantees. A natural way to increase the flexibility of SA is to allow the objective function and the communication mechanism to be temperature-dependent, the idea being to gradually reveal the complexity of the optimization problem and to increase the mixing rate at low temperatures. We call this general class of annealing processes stochastic continuation (SC). In the first part of this paper, we introduce SC starting from SA, and we derive simple sufficient conditions for the global convergence of SC. Our main result is interesting in two respects: first, the conditions for global convergence are surprisingly weak—in particular, they do not involve the variations of the objective function with temperature—and second, exponential cooling makes it possible to be arbitrarily close to the best possible convergence speed exponent of SA. The second part is devoted to the application of SC to the problem of producing aesthetically pleasing drawings of undirected graphs. We consider the objective function defined by Kamada and Kawai (Inf Process Lett 31(1):7–15, 1989), which measures the quality of a drawing as a weighted sum of squared differences between Euclidean and graph-theoretic inter-vertex distances. Our experiments show that SC outperforms SA with optimal communication setting both in terms of minimizing the objective function and in terms of standard aesthetic criteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aarts E.H.L., Korst J.M., van Laarhoven P.J.M.: A quantitative analysis of the simulated annealing algorithm: a case study for the traveling salesman problem. J. Stat. Phys. 50(1/2), 187–206 (1988)

    Article  Google Scholar 

  2. Alizamir S., Rebennack S., Pardalos P.: Improving the neighborhood selection strategy in simulated annealing using optimal stopping problem. In: Tan, C. (eds) Simulated Annealing, pp. 363–382. I-Tech Education and Publishing, Austria (2008)

    Google Scholar 

  3. Bélisle C.: Convergence theorems for a class of simulated annealing algorithms on \({\mathbb{R}^d}\). J. Appl. Probab. 29(4), 885–895 (1992)

    Article  Google Scholar 

  4. Blake A., Zisserman A.: Visual Reconstruction. MIT Press, Cambridge (1987)

    Google Scholar 

  5. Borg I., Groenen P.: Modern Multidimensional Scaling. Springer, Berlin (2009)

    Google Scholar 

  6. Brandenburg, F., Himsolt, M., Rohrer, C.: An experimental comparison of force-directed and randomized graph drawing algorithms. In: Proceedings of the 1995 Symposium on Graph Drawing, Lecture Notes in Computer Science, vol. 1027, pp. 76–87. Springer, Berlin (1996)

  7. Bryan K., Cunningham P., Bolshakova N.: Application of simulated annealing to the biclustering of gene expression data. IEEE Trans. Inf. Technol. Biomed. 10(3), 519–525 (2006)

    Article  Google Scholar 

  8. Catoni O.: Large deviations and cooling schedules for the simulated annealing algorithm (in french). C. R. Acad. Sci. Paris Sér. I Math. 307, 535–538 (1988)

    Google Scholar 

  9. Catoni O.: Rough large deviation estimates for simulated annealing: application to exponential schedules. Ann. Probab. 20(3), 1109–1146 (1992)

    Article  Google Scholar 

  10. Catoni O.: Metropolis, simulated annealing, and iterated energy transformation algorithms: theory and experiments. J. Complex. 12(4), 595–623 (1996)

    Article  Google Scholar 

  11. Catoni O.: Solving scheduling problems by simulated annealing. SIAM J. Control Optim. 36(5), 1539–1575 (1998)

    Article  Google Scholar 

  12. Catoni, O.: Simulated annealing algorithms and Markov chains with rare transitions. In: Azema, J., Emery, M., Ledoux, M., Yor, M. (eds) Séminaire de probabilités XXXIII, Lecture Notes in Mathematics, vol. 1709, pp. 69–119. Springer, New York (1999)

  13. Chiang T.S., Chow Y.: On the convergence rate of annealing processes. SIAM J. Control Optim. 26(6), 1455–1470 (1988)

    Article  Google Scholar 

  14. Cohn H., Fielding M.: Simulated annealing: searching for an optimal temperature schedule. SIAM J. Optim. 9(3), 779–802 (1999)

    Article  Google Scholar 

  15. Cot C., Catoni O.: Piecewise constant triangular cooling schedules for generalized simulated annealing algorithms. Ann. Appl. Probab. 8(2), 375–396 (1998)

    Article  Google Scholar 

  16. Davidson R., Harel D.: Drawing graphs nicely using simulated annealing. ACM Trans. Graph. 15(4), 301–331 (1996)

    Article  Google Scholar 

  17. de Amorim S., Barthélemy J.P., Ribeiro C.: Clustering and clique partitioning: simulated annealing and tabu search approaches. J. Classif. 9(1), 17–41 (1992)

    Article  Google Scholar 

  18. Del Moral P., Miclo L.: On the convergence and applications of generalized simulated annealing. SIAM J. Control Optim. 37(4), 1222–1250 (1999)

    Article  Google Scholar 

  19. Desai M.: Some results characterizing the finite time behaviour of the simulated annealing algorithm. Sādhanā 24(4–5), 317–337 (1999)

    Google Scholar 

  20. Fielding M.: Simulated annealing with an optimal fixed temperature. SIAM J. Optim. 11(2), 289–307 (2000)

    Article  Google Scholar 

  21. Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected graphs. In: Proceedings of the 1994 Symposium on Graph Drawing, Lecture Notes in Computer Science, vol. 894, pp. 388–403. Springer, Berlin (1995)

  22. Frigerio A., Grillo G.: Simulated annealing with time-dependent energy function. Math. Z. 213, 97–116 (1993)

    Article  Google Scholar 

  23. Fruchterman T.M.J., Reingold E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  24. Gelfand S., Mitter S.: Metropolis-type annealing algorithms for global optimization in \({\mathbb{R}^d}\). SIAM J. Control Optim. 31(1), 111–131 (1993)

    Article  Google Scholar 

  25. Gidas B.: Nonstationary Markov chains and convergence of the annealing algorithm. J. Stat. Phys. 39(1/2), 73–131 (1985)

    Article  Google Scholar 

  26. Groenen P., Heiser W.: The tunneling method for global optimization in multidimensional scaling. Psychometrika 61(3), 529–550 (1996)

    Article  Google Scholar 

  27. Haario H., Saksman E.: Simulated annealing process in general state space. Adv. Appl. Probab. 23(4), 866–893 (1991)

    Article  Google Scholar 

  28. Hajek B.: Cooling schedules for optimal annealing. Math. Oper. Res. 13(2), 311–329 (1988)

    Article  Google Scholar 

  29. Harel D., Koren Y.: A fast multi-scale method for drawing large graphs. J. Graph Algorithms Appl. 6(3), 179–202 (2002)

    Article  Google Scholar 

  30. Jacobson S., Yucësan E.: Analyzing the performance of generalized hill climbing algorithms. J. Heuristics 10(4), 387–405 (2004)

    Article  Google Scholar 

  31. Johnson A., Jacobson S.: On the convergence of generalized hill climbing algorithms. Discrete Appl. Math. 119(1–2), 37–57 (2002)

    Article  Google Scholar 

  32. Johnson D., Aragon C., McGeoch L., Shevon C.: Optimization by simulated annealing: an experimental evaluation; part I, graph partitioning. Oper. Res. 37(6), 865–892 (1989)

    Article  Google Scholar 

  33. Johnson V., Wong W., Hu X., Chen C.T.: Image restoration using Gibbs priors: boundary modeling, treatment of blurring, and selection of hyperparameters. IEEE Trans. Pattern Anal. Mach. Intell. 13(5), 413–425 (1991)

    Article  Google Scholar 

  34. Kamada T., Kawai S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)

    Article  Google Scholar 

  35. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs: Methods and Models, Lecture Notes in Computer Science, vol. 2025. Springer, Berlin (2001)

  36. Kirkpatrick S., Gelatt C.D., Vecchi M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  Google Scholar 

  37. Locatelli M.: Convergence properties of simulated annealing for continuous global optimization. J. Appl. Probab. 33(4), 1127–1140 (1996)

    Article  Google Scholar 

  38. Locatelli M.: Simulated annealing algorithms for continuous global optimization: convergence conditions. J. Optim. Theory Appl. 104(1), 121–133 (2000)

    Article  Google Scholar 

  39. Löwe M.: Simulated annealing with time-dependent energy function via Sobolev inequalities. Stoch. Process. Appl. 63(2), 221–233 (1996)

    Article  Google Scholar 

  40. Nielsen M.: Graduated nonconvexity by functional focusing. IEEE Trans. Pattern Anal. Mach. Intell. 19(5), 521–525 (1997)

    Article  Google Scholar 

  41. Nikolaev A., Jacobson S.: Simulated annealing. In: Gendreau, M., Potvin, J.Y. (eds) Handbook of Metaheuristics, International Series in Operations Research and Management Science, vol. 146, pp. 1–40. Springer, Berlin (2010)

    Google Scholar 

  42. Nikolova M.: Markovian reconstruction using a GNC approach. IEEE Trans. Image Process. 8(9), 1204–1220 (1999)

    Article  Google Scholar 

  43. Ohlmann J., Bean J., Henderson S.: Convergence in probability of compressed annealing. Math. Oper. Res. 29(4), 837–860 (2004)

    Article  Google Scholar 

  44. Orosz J., Jacobson S.: Analysis of static simulated annealing algorithms. J. Optim. Theory Appl. 115(1), 165–182 (2002)

    Article  Google Scholar 

  45. Orosz J., Jacobson S.: Finite-time performance analysis of static simulated annealing algorithms. Comput. Optim. Appl. 21(1), 21–53 (2002)

    Article  Google Scholar 

  46. Purchase H.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5), 501–516 (2002)

    Article  Google Scholar 

  47. Robini M.C., Bresler Y., Magnin I.E.: On the convergence of Metropolis-type relaxation and annealing with constraints. Probab. Eng. Inf. Sci. 16(4), 427–452 (2002)

    Article  Google Scholar 

  48. Robini M.C., Lachal A., Magnin I.E.: A stochastic continuation approach to piecewise constant reconstruction. IEEE Trans. Image Process. 16(10), 2576–2589 (2007)

    Article  Google Scholar 

  49. Robini M.C., Magnin I.E.: Stochastic nonlinear image restoration using the wavelet transform. IEEE Trans. Image Process. 12(8), 890–905 (2003)

    Article  Google Scholar 

  50. Robini M.C., Magnin I.E.: Optimization by stochastic continuation. SIAM J. Imaging Sci. 3(4), 1096–1121 (2010)

    Article  Google Scholar 

  51. Robini M.C., Rastello T., Magnin I.E.: Simulated annealing, acceleration techniques and image restoration. IEEE Trans. Image Process. 8(10), 1374–1387 (1999)

    Article  Google Scholar 

  52. Robini M.C., Reissman P.J.: On simulated annealing with temperature-dependent energy and temperature-dependent communication. Stat. Probab. Lett. 81(8), 915–920 (2011)

    Article  Google Scholar 

  53. Schuur P.: Classification of acceptance criteria for the simulated annealing algorithm. Math. Oper. Res. 22(2), 266–275 (1997)

    Article  Google Scholar 

  54. Tollis I., Battista G.D., Eades P., Tamassia R.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Englewood Cliffs, NJ (1999)

    Google Scholar 

  55. Trosset, M.: On the existence of nonglobal minimizers of the stress criterion for metric multidimensional scaling. In: Proceedings of the Statistical Computing Section, pp. 158–162. ASA (1997)

  56. Trouvé A.: Cycle decompositions and simulated annealing. SIAM J. Control Optim. 34(3), 966–986 (1996)

    Article  Google Scholar 

  57. Wang J.P.: Stochastic relaxation on partitions with connected components and its application to image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 20(6), 619–636 (1998)

    Article  Google Scholar 

  58. Ware C., Purchase H., Colpoys L., McGill M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002)

    Article  Google Scholar 

  59. Yang R.: Convergence of the simulated annealing algorithm for continuous global optimization. J. Optim. Theory Appl. 104(3), 691–716 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc C. Robini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robini, M.C., Reissman, PJ. From simulated annealing to stochastic continuation: a new trend in combinatorial optimization. J Glob Optim 56, 185–215 (2013). https://doi.org/10.1007/s10898-012-9860-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-012-9860-0

Keywords

Navigation