Skip to main content
Log in

A penalty approximation method for a semilinear parabolic double obstacle problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this work, we present a novel power penalty method for the approximation of a global solution to a double obstacle complementarity problem involving a semilinear parabolic differential operator and a bounded feasible solution set. We first rewrite the double obstacle complementarity problem as a double obstacle variational inequality problem. Then, we construct a semilinear parabolic partial differential equation (penalized equation) for approximating the variational inequality problem. We prove that the solution to the penalized equation converges to that of the variational inequality problem and obtain a convergence rate that is corresponding to the power used in the formulation of the penalized equation. Numerical results are presented to demonstrate the theoretical findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Friedman, A.: Variational Principles and Free Boundary Problems. Wiley, New York (1982)

    Google Scholar 

  2. Forsyth, P.A., Vetzal, K.R.: Quadratic convergence for valuing American options using a penalty method. SIAM J. Sci. Comput. 23, 2095–2122 (2002)

    Article  Google Scholar 

  3. Gabriel, S.A.: An NE/SQP method for the bounded nonlinear complementarity problem. J. Optim. Theory Appl. 97, 493–506 (1998)

    Article  Google Scholar 

  4. Glowinski, R.: Numerical methods for nonlinear variational problems. Springer, New York (1984)

    Book  Google Scholar 

  5. Glowinski, R., Kuznetsov, Y.A., Pan, T.W.: A penalty/Newton/conjugate gradient method for the solution of obstacle problems. C. R. Math. Acad. Sci. Paris 336, 435–440 (2003)

    Article  Google Scholar 

  6. Goeleven, D., Motreanu, D.: Variational and Hemivariational Inequalities: Theory, Methods, and Applications, Unilateral Analysis and Unilateral Mechanics, vol. I. Kluwer Academic Publishers, Dordrecht (2003)

    Google Scholar 

  7. Haslinger, J., Miettinen, M.: Finite Element Method for Hemivariational Inequalities. Kluwer Academic Publisher, Dordrecht (1999)

    Book  Google Scholar 

  8. Huang, C.C., Wang, S.: A power penalty approach to a nonlinear complementarity problem. Oper. Res. Lett. 38, 72–76 (2010)

    Article  Google Scholar 

  9. Huang, Y.S., Zhou, Y.Y.: Penalty approximation method for a class of elliptic variational inequality problems. Comput. Math. Appl. 53, 1665–1671 (2007)

    Article  Google Scholar 

  10. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (1996)

    Book  Google Scholar 

  11. Ito, K., Kunisch, K.: Optimal control of parabolic variational inequalities. J. Math. Pures Appl. 93, 329–360 (2010)

    Article  Google Scholar 

  12. Kanzow, C.: Global optimization techniques for mixed complementarity problems. J. Glob. Optim. 16, 1–21 (2000)

    Article  Google Scholar 

  13. Li, W., Wang, S.: Penalty approach to the HJB equation arising in European stock option pricing with proportional transaction costs. J. Optim. Theory Appl. 143, 279–293 (2009)

    Article  Google Scholar 

  14. Li, W., Wang, S.: Pricing American options under proportional transaction costs using a penalty approach and a finite difference scheme. J. Ind. Manag. Optim. 9, 365–389 (2013)

    Article  Google Scholar 

  15. Liu, J.Z., Bai, L.H., Yiu, K.F.C.: Optimal investment with a value-at-risk constraint. J. Ind. Manag. Optim. 8, 531–547 (2012)

    Article  Google Scholar 

  16. Mangasarian, O.L., Solodov, M.V.: Nonlinear complementarity as unconstrained and constrained minimization. Math. Program. 62, 277–297 (1993)

    Article  Google Scholar 

  17. Rubinov, A.M., Glover, B.M., Yang, X.Q.: Decreasing functions with application to penalization. SIAM J. Optim. 10, 289–313 (1999)

    Article  Google Scholar 

  18. Rubinov, A.M., Yang, X.Q.: Lagrange-type functions in constrained non-convex optimization. Kluwer Academic Publishers, Dordrecht (2003)

    Book  Google Scholar 

  19. Wang, F., Cheng, X.L.: An algorithm for solving the double obstacle problems. Appl. Math. Comput. 201, 221–228 (2008)

    Article  Google Scholar 

  20. Wang, S., Huang, C.S.: A power penalty method for solving a nonlinear parabolic complementarity problem. Nonlinear Anal. 69, 1125–1137 (2008)

    Article  Google Scholar 

  21. Wang, S., Yang, X.Q.: A power penalty method for linear complementarity problems. Oper. Res. Lett. 36, 211–214 (2008)

    Article  Google Scholar 

  22. Wang, S., Yang, X.Q., Teo, K.L.: Power penalty method for a linear complementarity problem arising from American option valuation. J. Optim. Theory Appl. 129, 227–254 (2006)

    Article  Google Scholar 

  23. Wang, J.R., Zhou, Y., Wei, W.: Optimal feedback control for semilinear fractional evolution equations in Banach spaces. Syst. Control Lett. 61, 472–476 (2012)

    Article  Google Scholar 

  24. Xing, X.Y., Yang, H.L.: American type geometric step options. J. Ind. Manag. Optim. 9, 549–560 (2013)

    Article  Google Scholar 

  25. Yamashita, N., Fukushima, M.: On stationary points of the implicit Lagrangian for nonlinear complementarity problems. J. Optim. Theory Appl. 84, 653–663 (1995)

    Article  Google Scholar 

  26. Zeidler, E.: Nonlinear Functional Analysis and its Applications III: Variational Methods and Optimization. Springer, New York (1985)

    Book  Google Scholar 

  27. Zeidler, E.: Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators. Springer, New York (1985)

    Book  Google Scholar 

  28. Zhang, K., Wang, S.: Convergence property of an interior penalty approach to pricing American option. J. Ind. Manag. Optim. 7, 435–448 (2011)

    Article  Google Scholar 

  29. Zhang, K., Yang, X.Q., Teo, K.L.: Convergence analysis of a monotonic penalty method for American option pricing. J. Math. Anal. Appl. 348, 915–926 (2008)

    Article  Google Scholar 

  30. Zvan, R., Forsyth, P.A., Vetzal, K.R.: Penalty methods for American options with stochastic volatility. J. Comput. Appl. Math. 91, 199–218 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referees and Associate Editor for their valuable comments and constructive suggestions for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Y. Zhou.

Additional information

This research was supported by Grants from Natural Science Foundation of China (11071180), ( 11171247), (10831009), The Hong Kong Polytechnic University (G-YX1Q) and the Research Grants Council of Hong Kong (PolyU 5306/11E).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y.Y., Wang, S. & Yang, X.Q. A penalty approximation method for a semilinear parabolic double obstacle problem. J Glob Optim 60, 531–550 (2014). https://doi.org/10.1007/s10898-013-0122-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-013-0122-6

Keywords

Mathematical Subject Classification

Navigation