Skip to main content
Log in

ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

This manuscript introduces ANTIGONE, Algorithms for coNTinuous/Integer Global Optimization of Nonlinear Equations, a general mixed-integer nonlinear global optimization framework. ANTIGONE is the evolution of the Global Mixed-Integer Quadratic Optimizer, GloMIQO, to general nonconvex terms. The purpose of this paper is to show how the extensible structure of ANTIGONE realizes our previously-proposed mixed-integer quadratically-constrained quadratic program and mixed-integer signomial optimization computational frameworks. To demonstrate the capacity of ANTIGONE, this paper presents computational results on a test suite of \(2{,}571\) problems from standard libraries and the open literature; we compare ANTIGONE to other state-of-the-art global optimization solvers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Achterberg, T.: SCIP: Solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009)

    Google Scholar 

  2. Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint integer programming: a new approach to integrate CP and MIP. In: Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR (2008)

  3. Achterberg, T., Koch, T., Martin, A.: Branching rules revisited. Oper. Res. Lett. 33(1), 42–54 (2005)

    Google Scholar 

  4. Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, \(\alpha \)BB, for general twice differentiable NLPs-II. Implementation and computional results. Comput. Chem. Eng. 22, 1159–1179 (1998b)

    Google Scholar 

  5. Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, \(\alpha \)BB, for general twice differentiable NLPs-I. Theoretical advances. Comput. Chem. Eng. 22, 1137–1158 (1998a)

    Google Scholar 

  6. Ahmetović, E., & Grossmann, I.E.: Integrated process water networks design problem (2010). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=101

  7. Ahmetović, E., Grossmann, I.E.: Global superstructure optimization for the design of integrated process water networks. AIChE J. 57(2), 434–457 (2011)

    Google Scholar 

  8. Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8(2), 273–286 (1983)

    Google Scholar 

  9. Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen. D.: LAPACK Users’ Guide. Society for Industrial and Applied Mathematics, 3rd edn (1999)

  10. Androulakis, I.P., Maranas, C.D., Floudas, C.A.: \(\alpha \)BB: A global optimization method for general constrained nonconvex problems. J. Glob. Optim. 7, 337–363 (1995)

    Google Scholar 

  11. Anstreicher, K.M.: Recent advances in the solution of quadratic assignment problems. Math. Program. 97(1–2), 27–42 (2003)

    Google Scholar 

  12. Anstreicher, K.M.: Semidefinite programming versus the reformulation-linearization technique for nonconvex quadratically constrained quadratic programming. J. Glob. Optim. 43(2–3), 471–484 (2009)

    Google Scholar 

  13. Anstreicher, K.M.: On convex relaxations for quadratically constrained quadratic programming. Math. Program. 136(2), 233–251 (2012)

    Google Scholar 

  14. Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut algorithm for nonconvex quadratically constrained quadratic programming. Math. Program. 87(1), 131–152 (2000)

    Google Scholar 

  15. Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relaxations for nonconvex, quadratically-constrained quadratic programs. Optim. Methods Softw. 24(4–5), 485–504 (2009)

    Google Scholar 

  16. Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan, A.: Mixed-integer nonlinear optimization. Acta Numer. 22, 1–131, 5 (2013)

    Google Scholar 

  17. Belotti, P., Lee, J., Liberti, L., Margot, F., Wächter, A.: Branching and bounds tightening techniques for non-convex MINLP. Optim. Method. Softw. 24(4–5), 597–634 (2009)

    Google Scholar 

  18. Berthold, T., Gleixner, A.M., Heinz, S., Vigerske, S.: Analyzing the computational impact of MIQCP solver components. Numer. Algebr. Control Optim. 2(4), 739–748 (2012a)

    Google Scholar 

  19. Berthold, T., Heinz, S., Vigerske, S.: Extending a CIP framework to solve MIQCPs. In Lee, J., Leyffer S. (eds) Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications, pp. 427–444. Springer, New York (2012)

  20. Bonami, P., Biegler, L.T., Conn, A.R., Cornuéjols, G., Grossmann, I.E., Laird, C.D., Lee, J., Lodi, A., Margot, F., Sawaya, N., Wächter, A.: An algorithmic framework for convex mixed integer nonlinear programs. Discret. Optim. 5(2), 186–204 (2008)

    Google Scholar 

  21. Bragalli, C., DAmbrosio, C., Lee, J., Lodi, A., Toth, P.: On the optimal design of water distribution networks: a practical MINLP approach. Optim. Eng. 13, 219–246 (2012)

    Google Scholar 

  22. Brönnimann, H., Melquiond, G., Pion, S.: The Boost interval arithmetic library. In: Proceedings of the 5th Conference on Real Numbers and Computers, pp. 65–80. Lyon, France (2003)

  23. Brönnimann, H., Melquiond, G., Pion, S.: The design of the Boost interval arithmetic library. Theor. Comput. Sci. 351, 111–118 (2006)

    Google Scholar 

  24. Burer, S., Letchford, A.N.: Non-convex mixed-integer nonlinear programming: a survey. Surv. Oper. Res. Manag. Sci. 17(2), 97–106 (2012)

    Google Scholar 

  25. Burer, S., Vandenbussche, D.: A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations. Math. Program. 113(2), 259–282 (2008)

    Google Scholar 

  26. Bussieck, M.R., Drud, A.S., Meeraus, A.: MINLPLib: a collection of test models for mixed-integer nonlinear programming. INFORMS J. Comput 15(1), 114–119 (2003)

    Google Scholar 

  27. Bussieck, M.R., Vigerske, S.: MINLP solver software. In: Cochran, J.J., Cox, L.A., Keskinocak, P., Kharoufeh, J.P., Smith, J.C. (eds.) Wiley Encyclopedia of Operations Research and Management Science. Wiley, New York (2010)

    Google Scholar 

  28. Caballero, J.A., Grossmann, I.E.: Generalized disjunctive programming model for the optimal synthesis of thermally linked distillation columns. Ind. Eng. Chem. Res. 40(10), 2260–2274 (2001)

    Google Scholar 

  29. Caballero, J.A., Grossmann, I.E.: Design of distillation sequences: from conventional to fully thermally coupled distillation systems. Comput. Chem. Eng. 28(11), 2307–2329 (2004)

    Google Scholar 

  30. Caballero, J.A., Grossmann, I.E.: Structural considerations and modeling in the synthesis of heat integrated thermally coupled distillation sequences. Ind. Eng. Chem. Res. 45(25), 8454–8474 (2006)

    Google Scholar 

  31. Caballero, J.A., Grossmann, I.E.: Optimal separation sequences based on distillation: from conventional to fully thermally coupled systems (2009). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=69

  32. Cafieri, S., Lee, J., Liberti, L.: On convex relaxations of quadrilinear terms. J. Glob. Optim. 47, 661–685 (2010)

    Google Scholar 

  33. Castro, P., Novais, A.: Optimal periodic scheduling of multistage continuous plants with single and multiple time grid formulations. Ind. Eng. Chem. Res. 46(11), 3669–3683 (2007)

    Google Scholar 

  34. Castro, P., Novais, A.: Periodic scheduling of continuous multiproduct plants (2009). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=34

  35. Castro, P.M., Matos, H.A., Novais, A.Q.: An efficient heuristic procedure for the optimal design of wastewater treatment systems. Resour. Conserv. Recycl. 50(2), 158–185 (2007)

    Google Scholar 

  36. Castro, P.M., Teles, J.P.: Comparison of global optimization algorithms for the design of water-using networks. Comput. Chem. Eng. 52, 249–261 (2013)

    Google Scholar 

  37. Castro, P.M., Teles, J.P., Novais, A.Q.: Linear program-based algorithm for the optimal design of wastewater treatment systems. Clean Technol. Environ. Policy 11(1), 83–93 (2009)

    Google Scholar 

  38. Chang, Y.J., Sahinidis, N.V.: Global optimization in stabilizing controller design. J. Glob. Optim. 38, 509–526 (2007)

    Google Scholar 

  39. Chang, Y.J., Sahinidis, N.V.: Stabilizing controller design and the belgian chocolate problem (2009). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=57

  40. D’Ambrosio, C., Bragalli, C., Lee, J., Lodi, A., Toth, P.: Optimal design of water distribution networks (2011). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=134

  41. D’Ambrosio, C., Lodi, A.: Mixed integer nonlinear programming tools: an updated practical overview. Ann. Oper. Res. 204, 301–320 (2013)

    Google Scholar 

  42. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)

    Google Scholar 

  43. Domes, F., Neumaier, A.: Constraint propagation on quadratic constraints. Constraints 15(3), 404–429 (2010)

    Google Scholar 

  44. Domes, F., Neumaier, A.: Rigorous enclosures of ellipsoids and directed cholesky factorizations. SIAM J. Matrix Anal. Appl. 32, 262–285 (2011)

    Google Scholar 

  45. Duran, M.A., Grossmann, I.E.: A mixed-integer nonlinear programming algorithm for process systems synthesis. AIChE J. 32(4), 592–606 (1986a)

    Google Scholar 

  46. Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36, 307–339 (1986b)

    Google Scholar 

  47. Escobar, M., Grossmann, I.E.: Mixed-integer nonlinear programming models for optimal simultaneous synthesis of heat exchangers network (2010). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=93

  48. Flores-Tlacuahuac, A., Grossmann, I.E.: Simultaneous cyclic scheduling and control of a multiproduct cstr (2009). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=71

  49. Floudas, C.A.: Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University Press, New York (1995)

    Google Scholar 

  50. Floudas, C.A.: Deterministic Global Optimization : Theory, Methods and Applications. Nonconvex Optimization and Its Applications. Kluwer, Dordrecht (2000)

    Google Scholar 

  51. Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005)

    Google Scholar 

  52. Floudas, C.A., Gounaris, C.E.: A review of recent advances in global optimization. J. Glob. Optim. 45(1), 3–38 (2009)

    Google Scholar 

  53. Floudas, C.A., Pardalos, P.M.: State-of-the-art in global optimization: computational methods and applications—Preface. J. Glob. Optim. 7(2), 113 (1995)

    Google Scholar 

  54. Floudas, C.A., Pardalos, P.M., Adjiman, C.S., Esposito, W.R., Gümüs, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of Test Problems in Local and Global Optimization. Kluwer, Dordrecht (1999)

    Google Scholar 

  55. Fourer, R., Gay, D.M., Kernighan, B.W.: The AMPL Book. AMPL: A Modeling Language for Mathematical Programming. Duxbury Press, Brooks/Cole Publishing Company, Stamford (2002)

    Google Scholar 

  56. Fourer, R., Maheshwari, C., Neumaier, A., Orban, D., Schichl, H.: Convexity and concavity detection in computational graphs: tree walks for convexity assessment. INFORMS J. Comput 22(1), 26–43 (2010)

    Google Scholar 

  57. Gatzke, E.P., Tolsma, J.E., Barton, P.I.: Construction of convex relaxations using automated code generation techniques. Optim. Eng. 3, 305–326 (2002)

    Google Scholar 

  58. Gau, C.Y., Schrage, L.E.: Implementation and testing of a branch-and-bound based method for deterministic global optimization: operations research applications. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 145–164. Kluwer, Dordrecht (2003)

    Google Scholar 

  59. Geoffrion, A.M.: Elements of large-scale mathematical programming. 1. Concepts. Manag. Sci. Ser. Theory 16(11), 652–675 (1970)

    Google Scholar 

  60. Gopalakrishnan, A., Biegler, L.: MINLP and MPCC formulations for the cascading tanks problem (2011). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=140

  61. Gounaris, C.E., First, E.L., Floudas, C.A.: Estimation of diffusion anisotropy in microporous crystalline materials and optimization of crystal orientation in membranes. J. Chem. Phys. 139(12), 124703 (2013)

    Google Scholar 

  62. Gounaris, C.E., Floudas, C.A.: Convexity of products of univariate functions and convexification transformations for geometric programming. J. Optim. Theory Appl. 138, 407–427 (2008)

    Google Scholar 

  63. Grossmann, I.E.: Advances in mathematical programming models for enterprise-wide optimization. Comput. Chem. Eng. 47, 2–18 (2012)

    Google Scholar 

  64. Grossmann, I.E., Guillén-Gosálbez, G.: Scope for the application of mathematical programming techniques in the synthesis and planning of sustainable processes. Comput. Chem. Eng. 34(9), 1365–1376 (2010)

    Google Scholar 

  65. Grossmann, I.E., Sargent, R.W.H.: Optimum design of multipurpose chemical plants. Ind. Eng. Chem. Process Des. Dev. 18(2), 343–348 (1979)

    Google Scholar 

  66. Guillén-Gosálbez, G., Pozo, C.: Optimization of metabolic networks in biotechnology (2010). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=81

  67. Guillén-Gosálbez, G., Sorribas, A.: Identifying quantitative operation principles in metabolic pathways: a systematic method for searching feasible enzyme activity patterns leading to cellular adaptive responses. BMC Bioinform. 10, 386 (2009)

    Google Scholar 

  68. Kallrath, J.: Cutting circles and polygons from area-minimizing rectangles. J. Glob. Optim. 43, 299–328 (2009)

    Google Scholar 

  69. Kallrath, J., Rebennack, S.: Cutting ellipses from area-minimizing rectangles. J. Glob. Optim. 1–33 (2013). doi:10.1007/s10898-013-0125-3

  70. Karuppiah, R., Grossmann, I.E.: Global optimization for the synthesis of integrated water systems in chemical processes. Comput. Chem. Eng. 30, 650–673 (2006)

    Google Scholar 

  71. Khajavirad, A., Sahinidis, N.V.: Convex envelopes of products of convex and component-wise concave functions. J. Glob. Optim. 52, 391–409 (2012)

    Google Scholar 

  72. Khajavirad, A., Sahinidis, N.V.: Convex envelopes generated from finitely many compact convex sets. Math. Program. 137(1–2), 371–408 (2013)

    Google Scholar 

  73. Khor, C.S., Chachuat, B., Shah, N.: Fixed-flowrate total water network synthesis under uncertainty with risk management. J. Clean. Prod. (2014). doi:10.1016/j.jclepro.2014.01.023

  74. Kocis, G.R., Grossmann, I.E.: Global optimization of nonconvex mixed-integer nonlinear programming (MINLP) problems in process synthesis. Ind. Eng. Chem. Res. 27(8), 1407–1421 (1988)

    Google Scholar 

  75. Kolodziej, S.P., Castro, P.M., Grossmann, I.E.: Global optimization of bilinear programs with a multiparametric disaggregation technique. J. Glob. Optim. 57(4), 1039–1063 (2013a)

    Google Scholar 

  76. Kolodziej, S.P., Grossmann, I.E., Furman, K.C., Sawaya, N.W.: A discretization-based approach for the optimization of the multiperiod blend scheduling problem. Comput. Chem. Eng. 53, 122–142 (2013b)

    Google Scholar 

  77. Lebbah, Y., Michel, C., Rueher, M.: A rigorous global filtering algorithm for quadratic constraints. Constraints 10(1), 47–65 (2005)

    Google Scholar 

  78. Lee, H., Pinto, J.M., Grossmann, I.E., Park, S.: Mixed-integer linear programming model for refinery short-term scheduling of crude oil unloading with inventory management. Ind. Eng. Chem. Res. 35(5), 1630–1641 (1996)

    Google Scholar 

  79. Li, J., Li, A., Karimi, I.A., Srinivasan, R.: Improving the robustness and efficiency of crude scheduling algorithms. AIChE J. 53(10), 2659–2680 (2007)

    Google Scholar 

  80. Li, J., Misener, R., Floudas, C.A.: Continuous-time modeling and global optimization approach for scheduling of crude oil operations. AIChE J. 58(1), 205–226 (2012a)

    Google Scholar 

  81. Li, X., Armagan, E., Tomasgard, A., Barton, P.I.: Stochastic pooling problem for natural gas production network design and operation under uncertainty. AIChE J. 57(8), 2120–2135 (2011)

    Google Scholar 

  82. Li, X., Tomasgard, A., Barton, P.I.: Decomposition strategy for the stochastic pooling problem. J. Glob. Optim. 54(4), 765–790 (2012b)

    Google Scholar 

  83. Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25, 157–168 (2003)

    Google Scholar 

  84. Liberti, L., Pantelides, C.C.: An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. J. Glob. Optim. 36(2), 161–189 (2006)

    Google Scholar 

  85. Lin, Y., Schrage, L.: The global solver in the LINDO API. Optim. Methods Softw. 24(4–5), 657–668 (2009)

    Google Scholar 

  86. Locatelli, M., Schoen, F.: On convex envelopes for bivariate functions over polytopes. Math. Program. (2012). doi:10.1007/s10107-012-0616-x

  87. Loiola, E.M., Maia de Abreu, N.M., Boaventura-Netto, P.O., Hahn, P., Querido, T.: A survey for the quadratic assignment problem. Eur. J. Oper. Res. 176(2), 657–690 (2007)

    Google Scholar 

  88. Lougee-Heimer, R.: The common optimization INterface for operations research: promoting open-source software in the operations research community. IBM J. Res. Dev. 47(1), 57–66 (2003)

    Google Scholar 

  89. Lundell, A., Skjäl, A., Westerlund, T.: A reformulation framework for global optimization. J. Glob. Optim. 57(1), 115–141 (2013)

    Google Scholar 

  90. Lundell, A., Westerlund, J., Westerlund, T.: Some transformation techniques with applications in global optimization. J. Glob. Optim. 43, 391–405 (2009)

    Google Scholar 

  91. Lundell, A., Westerlund, T.: Convex underestimation strategies for signomial functions. Optim. Methods Softw. 24(4–5), 505–522 (2009)

    Google Scholar 

  92. Lundell, A., Westerlund, T.: Global optimization of mixed-integer signomial programming problems. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming, volume 154 of The IMA Volumes in Mathematics and its Applications, pp. 349–369. Springer, New York (2012)

    Google Scholar 

  93. Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob. Optim. 7(2), 143–182 (1995)

    Google Scholar 

  94. Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Comput. Chem. Eng. 21(4), 351–369 (1997)

    Google Scholar 

  95. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part 1-convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    Google Scholar 

  96. McDonald, C.M., Floudas, C.A.: Glopeq: a new computational tool for the phase and chemical equilibrium problem. Comput. Chem. Eng. 21(1), 1–23 (1996)

    Google Scholar 

  97. Meeraus, A.: GLOBALLib. http://www.gamsworld.org/global/globallib.htm

  98. Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of the convex and concave envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 327–352. Kluwer, Dordrecht (2003)

    Google Scholar 

  99. Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave envelopes. J. Glob. Optim. 29(2), 125–155 (2004)

    Google Scholar 

  100. Meyer, C.A., Floudas, C.A.: Convex envelopes for edge-concave functions. Math. Program. 103(2), 207–224 (2005)

    Google Scholar 

  101. Misener, R., Floudas, C.A.: Advances for the pooling problem: modeling, global optimization, and computational studies. Appl. Comput. Math. 8(1), 3–22 (2009)

    Google Scholar 

  102. Misener, R., Floudas, C.A.: Global optimization of mixed-integer models with quadratic and signomial functions: a review. Appl. Comput. Math. 11(3), 317–336 (2012a)

    Google Scholar 

  103. Misener, R., Floudas, C.A.: Global optimization of mixed-integer quadratically-constrained quadratic programs (MIQCQP) through piecewise-linear and edge-concave relaxations. Math. Program. B 136, 155–182 (2012b)

    Google Scholar 

  104. Misener, R., Floudas, C.A.: A framework for globally optimizing mixed-integer signomial programs. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0396-3

  105. Misener, R., Floudas, C.A.: GloMIQO: global mixed-integer quadratic optimizer. J. Glob. Optim. 57(1), 3–50 (2013b)

    Google Scholar 

  106. Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically-generated cutting planes for mixed-integer quadratically-constrained quadratic programs and their incorporation into GloMIQO 2.0. 2012. Submitted for Publication

  107. Misener, R., Thompson, J.P., Floudas, C.A.: APOGEE: global optimization of standard, generalized, and extended pooling problems via linear and logarithmic partitioning schemes. Comput. Chem. Eng. 35(5), 876–892 (2011)

    Google Scholar 

  108. Mitsos, A., Chachuat, B., Barton, P.I.: McCormick-based relaxations of algorithms. SIAM J. Optim. 20(2), 573–601 (2009)

    Google Scholar 

  109. Mouret, S., Grossmann, I.E.: Crude-oil operations scheduling (2010). Available from CyberInfrastructure for MINLP [A collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=117

  110. Mouret, S., Grossmann, I.E., Pestiaux, P.: A novel priority-slot based continuous-time formulation for crude-oil scheduling problems. Ind. Eng. Chem. Res. 48(18), 8515–8528 (2009)

    Google Scholar 

  111. Neun, W., Sturm, T., Vigerske, S. (2010) Supporting global numerical optimization of rational functions by generic symbolic convexity tests. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing, volume 6244 of Lecture Notes in Computer Science, pp. 205–219 (2010)

  112. Niknam, T., Khodaei, A., Fallahi, F.: A new decomposition approach for the thermal unit commitment problem. Appl. Energy 86(9), 1667–1674 (2009)

    Google Scholar 

  113. Nowak, I.: Relaxation and decomposition methods for mixed integer nonlinear programming. International series of numerical mathematics, Birkhäuser (2005). ISBN 9783764372385

  114. Nyberg, A., Grossmann, I.E., Westerlund, T.: The optimal design of a three-echelon supply chain with inventories under uncertainty (2012). Available from CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=157

  115. Nyberg, A., Grossmann, I.E., Westerlund, T.: An efficient reformulation of the multiechelon stochastic inventory system with uncertain demands. AIChE J. 59(1), 23–28 (2013)

    Google Scholar 

  116. Quesada, I., Grossmann, I.E.: A global optimization algorithm for linear fractional and bilinear programs. J. Glob. Optim. 6(1), 39–76 (1995)

    Google Scholar 

  117. Ruiz, J.P., Grossmann, I.E.: Water treatment network design (2009). Available from CyberInfrastructure for MINLP [www.minlp.org, a collaboration of Carnegie Mellon University and IBM Research] at: www.minlp.org/library/problem/index.php?i=24

  118. Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Comput. Chem. Eng. 19(5), 551–566 (1995)

    Google Scholar 

  119. Ryoo, H.S., Sahinidis, N.V.: A branch-and-reduce approach to global optimization. J. Glob. Optim. 8, 107–138 (1996)

    Google Scholar 

  120. Sawaya, N.W.: Reformulations, relaxations and cutting planes for generalized disjunctive programming. Carnegie Mellon University, PhD in Chemical Engineering (2006)

  121. Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed integer quadratically constrained programs: extended formulations. Math. Program. 124(1–2), 383–411 (2010)

    Google Scholar 

  122. Scozzari, A., Tardella, F.: A clique algorithm for standard quadratic programming. Discret. Appl. Math. 156(13), 2439–2448 (2008)

    Google Scholar 

  123. Selot, A., Kuok, L.K., Robinson, M., Mason, T.L., Barton, P.I.: A short-term operational planning model for natural gas production systems. AIChE J. 54(2), 495–515 (2008)

    Google Scholar 

  124. Sherali, H., Dalkiran, E., Liberti, L.: Reduced RLT representations for nonconvex polynomial programming problems. J. Glob. Optim. 52(3), 447–469 (2012)

    Google Scholar 

  125. Sherali, H.D., Adams, W.P.: A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems. Nonconvex Optimization and Its Applications. Kluwer, Dordrecht (1999)

    Google Scholar 

  126. Sherali, H.D., Alameddine, A.: A new reformulation-linearization technique for bilinear programming problems. J. Glob. Optim. 2, 379–410 (1992)

    Google Scholar 

  127. Sherali, H.D., Tuncbilek, C.H.: A reformulation-convexification approach for solving nonconvex quadratic-programming problems. J. Glob. Optim. (7): 1, 1–31 (1995)

  128. Sherali, H.D., Tuncbilek, C.H.: New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems. Oper. Res. Lett. 21(1), 1–9 (1997)

    Google Scholar 

  129. Shikhman, V., Stein, O.: On jet-convex functions and their tensor products. Optimization 61(6), 717–731 (2012)

    Google Scholar 

  130. Smith, E.M.B., Pantelides, C.C.: A symbolic reformulation/spatial branch-and-bound algorithm for the global optimisation of nonconvex MINLPs. Comput. Chem. Eng. 23(4–5), 457–478 (1999)

    Google Scholar 

  131. Tadayon, B., Smith, J.C.: Algorithms for an integer multicommodity network flow problem with node reliability considerations. J. Optim. Theory Appl. (2013). doi:10.1007/s10957-013-0378-5.

  132. Tardella, F.: On a class of functions attaining their maximum at the vertices of a polyhedron. Discret. Appl. Math. 22, 191–195 (1988/89)

    Google Scholar 

  133. Tardella, F.: On the existence of polyhedral convex envelopes. In: Floudas, C.A., Pardalos, P.M. (eds.) Frontiers in Global Optimization, pp. 563–573. Kluwer, Dordrecht (2003)

    Google Scholar 

  134. Tardella, F.: Existence and sum decomposition of vertex polyhedral convex envelopes. Optim. Lett. 2, 363–375 (2008)

    Google Scholar 

  135. Tawarmalani, M., Richard, J.-P.P., Xiong, C.: Explicit convex and concave envelopes through polyhedral subdivisions. Math. Program. 138(1–2), 531–577 (2013)

    Google Scholar 

  136. Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexification techniques. J. Glob. Optim. 20, 133–154 (2001)

    Google Scholar 

  137. Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Applications, Software, and Applications. Nonconvex Optimization and Its Applications. Kluwer, Norwell (2002)

    Google Scholar 

  138. Tawarmalani, M., Sahinidis, N.V.: Global optimization of mixed-integer nonlinear programs: a theoretical and computational study. Math. Program. 99, 563–591 (2004)

    Google Scholar 

  139. Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach to global optimization. Math. Program. 103, 225–249 (2005)

    Google Scholar 

  140. Teles, J., Castro, P.M., Novais, A.Q.: Lp-based solution strategies for the optimal design of industrial water networks with multiple contaminants. Chem. Eng. Sci. 63(2), 376–394 (2008)

    Google Scholar 

  141. Teles, J.P., Castro, P.M., Matos, H.A.: Global optimization of water networks design using multiparametric disaggregation. Comput. Chem. Eng. 40, 132–147 (2012)

    Google Scholar 

  142. Vandenbussche, D., Nemhauser, G.L.: A branch-and-cut algorithm for nonconvex quadratic programs with box constraints. Math. Program. 102(3), 559–575 (2005a)

    Google Scholar 

  143. Vandenbussche, D., Nemhauser, G.L.: A polyhedral study of nonconvex quadratic programs with box constraints. Math. Program. 102(3), 531–557 (2005b)

    Google Scholar 

  144. Vigerske, S.: COIN-OR/GAMSLinks. https://projects.coin-or.org/GAMSlinks/ (2011)

  145. Vigerske, S.: Decomposition in Multistage Stochastic Programming and a Constraint Integer Programming Approach to Mixed-Integer Nonlinear Programming. Humboldt-University Berlin, PhD in Mathematics (2012)

  146. Yee, T.F., Grossmann, I.E.: Simultaneous optimization models for heat integrationII. Heat exchanger network synthesis. Comput. Chem. Eng. 14(10), 1165–1184 (1990)

    Google Scholar 

  147. You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models and algorithms for large-scale supply chain design with stochastic inventory management. Ind. Eng. Chem. Res. 47(20), 7802–7817 (2008)

    Google Scholar 

  148. You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models and algorithms for supply chain design with stochastic inventory management (2009a). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=3

  149. You, F., Grossmann, I.E.: Mixed-integer nonlinear programming models for the optimal design of multi-product batch plant (2009b). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=48

  150. You, F., Grossmann, I.E.: Integrated multi-echelon supply chain design with inventories under uncertainty: MINLP models, computational strategies. AIChE J. 56(2), 419–440 (2010)

    Google Scholar 

  151. Zondervan, E., Grossmann, I.E.: A deterministic security constrained unit commitment model (2009). Available from CyberInfrastructure for MINLP [A collaboration of CMU and IBM Research] at: www.minlp.org/library/problem/index.php?i=41

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christodoulos A. Floudas.

Additional information

C.A.F. is thankful for support from the National Science Foundation (CBET-0827907). This material is based upon work supported by both the National Science Foundation Graduate Research Fellowship to R.M. under Grant No. DGE-0646086 and by the Royal Academy of Engineering Research Fellowship to R.M.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 648 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misener, R., Floudas, C.A. ANTIGONE: Algorithms for coNTinuous / Integer Global Optimization of Nonlinear Equations. J Glob Optim 59, 503–526 (2014). https://doi.org/10.1007/s10898-014-0166-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-014-0166-2

Keywords

Navigation