Skip to main content
Log in

A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In many engineering optimization problems, the objective and the constraints which come from complex analytical models are often black-box functions with extensive computational effort. In this case, it is necessary for optimization process to use sampling data to fit surrogate models so as to reduce the number of objective and constraint evaluations as soon as possible. In addition, it is sometimes difficult for the constrained optimization problems based on surrogate models to find a feasible point, which is the premise of further searching for a global optimal feasible solution. For this purpose, a new Kriging-based Constrained Global Optimization (KCGO) algorithm is proposed. Unlike previous Kriging-based methods, this algorithm can dispose black-box constrained optimization problem even if all initial sampling points are infeasible. There are two pivotal phases in KCGO algorithm. The main task of the first phase is to find a feasible point when there is no feasible data in the initial sample. And the aim of the second phase is to obtain a better feasible point under the circumstances of fewer expensive function evaluations. Several numerical problems and three design problems are tested to illustrate the feasibility, stability and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Box, G.E.P., Hunter, W.G., Hunter, J.S.: Statistics for experimenters. Willey, New York (1978)

    MATH  Google Scholar 

  2. Hardy, R.L.: Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res. 76(8), 1905–1915 (1971)

    Article  Google Scholar 

  3. Gunn, S.R.: Support Vector Machines for Classification and Regression, vol. 14. ISIS technical report (1998)

  4. Friedman, J.H.: Multivariate adaptive regression splines. Ann. Stat. 19(1), 1–67 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cassioli, A., Schoen, F.: Global optimization of expensive black box problems with a known lower bound. J. Glob. Optim. 57(1), 177–190 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Sacks, J., et al.: Design and analysis of computer experiments. Stat. Sci. 4(4), 409–423 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Krige, D.G.: A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 52, 119–139 (1951)

    Google Scholar 

  8. Li, Y., Wu, Y., Huang, Z.: An incremental Kriging method for sequential optimal experimental design. Comput. Model. Eng. Sci. (CMES) 97(4), 323–357 (2014)

    Google Scholar 

  9. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kanazaki, M., Takagi, H., Makino, Y.: Mixed-fidelity efficient global optimization applied to design of supersonic wing. Procedia Eng. 67, 85–99 (2013)

    Article  Google Scholar 

  11. Huang, D., et al.: Global optimization of stochastic black-box systems via sequential Kriging meta-models. J. Glob. Optim. 34(3), 441–466 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Horowitz, B., et al.: A concurrent efficient global optimization algorithm applied to polymer injection strategies. J. Pet. Sci. Eng. 71(3–4), 195–204 (2010)

    Article  Google Scholar 

  13. Ur Rehman, S., Langelaar, M., van Keulen, F.: Efficient Kriging-based robust optimization of unconstrained problems. J. Comput. Sci. 5(6), 872–881 (2014)

  14. Seulgi, Y., Hyung-Il, K., Seongim, C.: Efficient global optimization using a multi-objective approach infill sampling criteria. In: 52nd AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics Inc, Reston, VA, USA, pp. 13–17 Jan. 2014 (2013)

  15. Masato, S., Gerhard, V., Vladimir, B.: Combined Kriging and gradient-based optimization method. In: 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. American Institute of Aeronautics and Astronautics (2006)

  16. Wang, L., Shan, S., Wang, G.G.: Mode-pursuing sampling method for global optimization on expensive black-box functions. Eng. Optim. 36(4), 419–438 (2004)

    Article  Google Scholar 

  17. Regis, R.G., Shoemaker, C.A.: Constrained global optimization of expensive black box functions using radial basis functions. J. Glob. Optim. 31(1), 153–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schonlau, M.: Computer Experiments and Global Optimization. University of Waterloo, Waterloo (1998)

    Google Scholar 

  19. Tutum, C.C., Deb, K., Baran, I.: Constrained efficient global optimization for pultrusion process. Mater. Manuf. Process. 30(4), 538–551 (2015)

    Article  Google Scholar 

  20. Basudhar, A., Missoum, S.: A sampling-based approach for probabilistic design with random fields. Comput. Methods Appl. Mech. Eng. 198(47), 3647–3655 (2009)

    Article  MATH  Google Scholar 

  21. Sasena, M.J., Papalambros, P., Goovaerts, P.: Exploration of metamodeling sampling criteria for constrained global optimization. Eng. Optim. 34(3), 263–278 (2002)

    Article  Google Scholar 

  22. Audet, C., et al.: A surrogate-model-based method for constrained optimization. AIAA Pap. 4891 (2000)

  23. Basudhar, A., et al.: Constrained efficient global optimization with support vector machines. Struct. Multidiscip. Optim. 46(2), 201–221 (2012)

    Article  MATH  Google Scholar 

  24. Picheny, V.: A stepwise uncertainty reduction approach to constrained global optimization. In: AISTATS, pp. 787–795 (2014)

  25. Bichon, B.J., et al.: Efficient global reliability analysis for nonlinear implicit performance functions. AIAA J. 46(10), 2459–2468 (2008)

    Article  Google Scholar 

  26. Björkman, M., Holmström, K.: Global optimization of costly nonconvex functions using radial basis functions. Optim. Eng. 1(4), 373–397 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Regis, R.G.: Stochastic radial basis function algorithms for large-scale optimization involving expensive black-box objective and constraint functions. Comput. Oper. Res. 38(5), 837–853 (2011)

    Article  MathSciNet  Google Scholar 

  28. Regis, R.G.: Constrained optimization by radial basis function interpolation for high-dimensional expensive black-box problems with infeasible initial points. Eng. Optim. 46(2), 218–243 (2014)

    Article  MathSciNet  Google Scholar 

  29. Martin, J.D.: Computational improvements to estimating Kriging metamodel parameters. J. Mech. Des. 131, 084501 (2009)

    Article  Google Scholar 

  30. András, S., Leary, S.J., Keane, A.J.: On the design of optimization strategies based on global response surface approximation models. J. Glob. Optim. 33(1), 31–59 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lophaven, S.N., Nielsen, H.B., Søndergaard, J.: DACE—a Matlab Kriging toolbox, version 2. Technical Report No. IMM-TR-2002-12, Informatics and mathematical modelling, Technical University of Denmark (2002)

  32. Jones, D.R.: A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 21(4), 345–383 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mezura-Montes, E., Cetina-Domínguez, O.: Empirical analysis of a modified artificial bee colony for constrained numerical optimization. Appl. Math. Comput. 218(22), 10943–10973 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Arora, J.S.: Introduction to Optimum Design. McGraw-Hill, New York (1989)

    Google Scholar 

  35. Azarm, S., L.W, C.: Multi-level design optimization using global monotonicity analysis. J. Mech. Transm. Autom. Des. 111(2), 259–263 (1989)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Nos. 51575205 and 61370182), the Program for Science & technology Innovation teams in Universities of Henan Province (No. 14IRTSTHN022) and Henan Natural Science Foundation (No. 162300410263).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizhong Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wu, Y., Zhao, J. et al. A Kriging-based constrained global optimization algorithm for expensive black-box functions with infeasible initial points. J Glob Optim 67, 343–366 (2017). https://doi.org/10.1007/s10898-016-0455-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-016-0455-z

Keywords

Navigation