Skip to main content
Log in

Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

In this paper, we generalize the extended supporting hyperplane algorithm for a convex continuously differentiable mixed-integer nonlinear programming problem to solve a wider class of nonsmooth problems. The generalization is made by using the subgradients of the Clarke subdifferential instead of gradients. Consequently, all the functions in the problems are assumed to be locally Lipschitz continuous. The algorithm is shown to converge to a global minimum of an MINLP problem if the objective function is convex and the constraint functions are \(f^{\circ }\)-pseudoconvex. With some additional assumptions, the constraint functions may be \(f^{\circ }\)-quasiconvex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Arnold, T., Henrion, R., Moller, A., Vigerske, S.: A mixed-integer stochastic nonlinear optimization problem with joint probabilistic constraints. Pac. J. Optim. 10, 5–20 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Bagirov, A., Mäkelä, M.M., Karmitsa, N.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  3. Bonami, P., Cournuéjols, G., Lodi, A., Margot, F.: A feasibility pump for mixed integer nonlinear programs. Math. Program. 119, 331–352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Castillo, I., Westerlund, J., Emet, S., Westerlund, T.: Optimization of block layout design problems with unequal areas: a comparison of MILP and MINLP optimization methods. Comput. Chem. Eng. 30, 54–69 (2005)

    Article  Google Scholar 

  5. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  6. de Oliveira, W.: Regularized optimization methods for convex MINLP problems. TOP 24, 665–692 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Emet, S., Westerlund, T.: Comparisons of solving a chromatographic separation problem using MINLP methods. Comput. Chem. Eng. 28, 673–682 (2004)

    Article  Google Scholar 

  8. Eronen, V.-P., Mäkelä, M.M., Westerlund, T.: Extended cutting plane method for a class of nonsmooth nonconvex MINLP problems. Optimization 64(3), 641–661 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Kronqvist, J., Lundell, A., Westerlund, T.: The ESH algorithm for convex mixed-integer nonlinear programming. J. Glob. Optim. 64(2), 249–272 (2016)

  10. Meller, R.D., Narayanan, V., Vance, P.H.: Optimal facility layout design. Oper. Res. Lett. 23, 117–127 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pörn, R.: Mixed-Integer Non-Linear Programming: Convexification Techniques and Algorithm Development. Ph.D. Thesis, Åbo Akademi University (2000)

  12. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–152 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Veinott Jr., A.F.: The supporting hyperplane method for unimodal programming. Oper. Res. 15(1), 147–152 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  14. Westerlund, T., Pörn, R.: Solving pseudo-convex mixed integer optimization problems by cutting plane techniques. Optim. Eng. 3, 253–280 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Grant No. 289500 and 294002 of the Academy of Finland. Jan Kronqvist would like to thank the Graduate School in Chemical Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ville-Pekka Eronen.

Appendix: The facility layout problem: P3

Appendix: The facility layout problem: P3

In this problem, 7 departments should be placed in a facility. The width and the height of the facility are \(w_F=8.54\) and \(h_F=13\), respectively. Parameters for the problem are in Table 3. The decision variables and the indices of the problem are:

  • \(i=\text {indexes of the departments:}\, 1,2,\ldots ,7\).

  • \(x_i,y_i=\) coordinates of the center of department i.

  • \(w_i =\) width of the department i.

  • \(h_i =\) height of the department i.

  • \(X_{ij},Y_{ij} =\) auxiliary variables.

The problem reads

$$\begin{aligned} \min&\sum _{i=1}^{6} \left| x_i-x_{i+1} \right| +\left| y_i-y_{i+1} \right| \end{aligned}$$
(7)
$$\begin{aligned} \mathrm{s.t.}&h_iw_i \ge a_i, \quad i=1,2,\ldots ,7 \end{aligned}$$
(8)
$$\begin{aligned}&x_i+\frac{1}{2} w_i \le w_F, \quad i=1,2,\ldots ,7 \end{aligned}$$
(9)
$$\begin{aligned}&-x_i+\frac{1}{2}w_i \le 0, \quad i=1,2,\ldots ,7 \end{aligned}$$
(10)
$$\begin{aligned}&y_i+\frac{1}{2} h_i \le h_F, \quad i=1,2,\ldots ,7 \end{aligned}$$
(11)
$$\begin{aligned}&-y_i+\frac{1}{2}h_i \le 0, \quad i=1,2,\ldots ,7 \end{aligned}$$
(12)
$$\begin{aligned}&\frac{1}{2}(w_i+w_j)-(x_i-x_j) \le w_{F}(X_{ij}+Y_{ij}), \quad 1 \le i< j \le 7 \end{aligned}$$
(13)
$$\begin{aligned}&\frac{1}{2}(w_i+w_j)-(x_j-x_i) \le w_{F}(1+X_{ij}-Y_{ij}), \quad 1 \le i< j \le 7 \end{aligned}$$
(14)
$$\begin{aligned}&\frac{1}{2}(h_i+h_j)-(y_i-y_j) \le h_{F}(1-X_{ij}+Y_{ij}), \quad 1 \le i< j \le 7 \end{aligned}$$
(15)
$$\begin{aligned}&\frac{1}{2}(h_i+h_j)-(y_j-y_i) \le h_{F}(2-X_{ij}-Y_{ij}), \quad 1 \le i< j \le 7 \end{aligned}$$
(16)
$$\begin{aligned}&x_1-x_2 \le 0 \end{aligned}$$
(17)
$$\begin{aligned}&y_1-y_2 \le 0 \end{aligned}$$
(18)
$$\begin{aligned}&w_{i}^{low} \le w_{i} \le w_{i}^{up}, \quad i=1,2,\ldots ,7 \end{aligned}$$
(19)
$$\begin{aligned}&h_{i}^{low} \le h_{i} \le h_{i}^{up}, \quad i=1,2,\ldots ,7 \end{aligned}$$
(20)
$$\begin{aligned}&X_{ij} \in \left\{ 0,1 \right\} , \quad 1 \le i< j \le 7 \end{aligned}$$
(21)
$$\begin{aligned}&Y_{ij} \in \left\{ 0,1 \right\} , \quad 1 \le i< j \le 7 \end{aligned}$$
(22)
Table 3 Parameters of the problem (P3)

The objective is to minimize the distance between consecutive departments. Constraints (7) define the minimum areas of the departments. Constraints (8)–(11) make sure the departments are located inside the facility. Constraints (12)–(15) prevent the overlapping of the departments. Constraints (16)–(17) erase symmetric solutions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eronen, VP., Kronqvist, J., Westerlund, T. et al. Method for solving generalized convex nonsmooth mixed-integer nonlinear programming problems. J Glob Optim 69, 443–459 (2017). https://doi.org/10.1007/s10898-017-0528-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-017-0528-7

Keywords

Mathematics Subject Classification

Navigation