Skip to main content
Log in

Accelerated sampling Kaczmarz Motzkin algorithm for the linear feasibility problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

The Sampling Kaczmarz Motzkin (SKM) algorithm is a generalized method for solving large-scale linear systems of inequalities. Having its root in the relaxation method of Agmon, Schoenberg, and Motzkin and the randomized Kaczmarz method, SKM outperforms the state-of-the-art methods in solving large-scale Linear Feasibility (LF) problems. Motivated by SKM’s success, in this work, we propose an Accelerated Sampling Kaczmarz Motzkin (ASKM) algorithm which achieves better convergence compared to the standard SKM algorithm on ill-conditioned problems. We provide a thorough convergence analysis for the proposed accelerated algorithm and validate the results with various numerical experiments. We compare the performance and effectiveness of ASKM algorithm with SKM, Interior Point Method (IPM) and Active Set Method (ASM) on randomly generated instances as well as Netlib LPs. In most of the test instances, the proposed ASKM algorithm outperforms the other state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. \(\delta \) here is same as \(\lambda \) in De Loera et al. [9].

References

  1. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(2), 262 (2008)

    Article  MathSciNet  Google Scholar 

  2. Leventhal, D., Lewis, A.S.: Randomized methods for linear constraints: convergence rates and conditioning. Math. Oper. Res. 35(3), 641–654 (2010)

    Article  MathSciNet  Google Scholar 

  3. Needell, D.: Randomized Kaczmarz solver for noisy linear systems. BIT Numer. Math. 50(2), 395–403 (2010)

    Article  MathSciNet  Google Scholar 

  4. Drineas, P., Mahoney, M.W., Muthukrishnan, S., Sarlós, T.: Faster least squares approximation. Numer. Math. 117(2), 219–249 (2011)

    Article  MathSciNet  Google Scholar 

  5. Zouzias, A., Freris, N.M.: Randomized extended Kaczmarz for solving least squares. SIAM J. Matrix Anal. Appl. 34(2), 773–793 (2013)

    Article  MathSciNet  Google Scholar 

  6. Lee, Y.T., Sidford, A.: Efficient accelerated coordinate descent methods and faster algorithms for solving linear systems. In: Proceedings of the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, FOCS’13, Washington, DC, USA. IEEE Computer Society, pp. 147–156 (2013)

  7. Ma, A., Needell, D., Ramdas, A.: Convergence properties of the randomized extended gauss seidel and Kaczmarz methods. SIAM J. Matrix Anal. Appl. 36(4), 1590–1604 (2015)

    Article  MathSciNet  Google Scholar 

  8. Qu, Z., Richtarik, P., Takac, M., Fercoq, O.: SDNA: stochastic dual Newton ascent for empirical risk minimization. In: Proceedings of the 33rd International Conference on Machine Learning, vol. 48, New York, USA, 20–22 June 2016. PMLR, pp. 1823–1832 (2016)

  9. De Loera, J., Haddock, J., Needell, D.: A sampling Kaczmarz–Motzkin algorithm for linear feasibility. SIAM J. Sci. Comput. 39(5), S66–S87 (2017)

    Article  MathSciNet  Google Scholar 

  10. Dembo, R.S., Eisenstat, S.C., Steihaug, T.: Inexact Newton methods. SIAM J. Numer. Anal. 19(2), 400–408 (1982)

    Article  MathSciNet  Google Scholar 

  11. Eisenstat, S.C., Walker, H.F.: Choosing the forcing terms in an inexact Newton method. SIAM J. Sci. Comput. 17(1), 16–32 (1996)

    Article  MathSciNet  Google Scholar 

  12. Bellavia, S.: Inexact interior-point method. J. Optim. Theory Appl. 96(1), 109–121 (1998)

    Article  MathSciNet  Google Scholar 

  13. Zhao, X.-Y., Sun, D., Toh, K.-C.: A Newton-CG augmented lagrangian method for semidefinite programming. SIAM J. Optim. 20(4), 1737–1765 (2010)

    Article  MathSciNet  Google Scholar 

  14. Wang, C., Aimin, X.: An inexact accelerated proximal gradient method and a dual Newton-CG method for the maximal entropy problem. J. Optim. Theory Appl. 157(2), 436–450 (2013)

    Article  MathSciNet  Google Scholar 

  15. Jiang, K., Sun, D., Toh, K.-C.: An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP. SIAM J. Optim. 22(3), 1042–1064 (2012)

    Article  MathSciNet  Google Scholar 

  16. Gondzio, J.: Convergence analysis of an inexact feasible interior point method for convex quadratic programming. SIAM J. Optim. 23(3), 1510–1527 (2013)

    Article  MathSciNet  Google Scholar 

  17. Kaczmarz, S.: Angenaherte auflsung von systemen linearer gleichungen. Bull. Int. Acad. Pol. Sci. Lett. 35, 355–357 (1937)

    MATH  Google Scholar 

  18. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer, New York (2009)

    Book  Google Scholar 

  19. Censor, Y.: Row-action methods for huge and sparse systems and their applications. SIAM Rev. 23(4), 444–466 (1981)

    Article  MathSciNet  Google Scholar 

  20. Liu, J., Wright, S.J.: An accelerated randomized Kaczmarz algorithm. Math. Comput. 85(297), 153–178 (2016)

    Article  MathSciNet  Google Scholar 

  21. Agamon, S.: The relaxation method for linear inequalities. Can. J. Math. 6, 382–392 (1954)

    Article  MathSciNet  Google Scholar 

  22. Motzkin, T.S., Schoenberg, I.J.: The relaxation method for linear inequalities. Can. J. Math. 6, 393–404 (1954)

    Article  MathSciNet  Google Scholar 

  23. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65, 65–386 (1958)

    Article  Google Scholar 

  24. Ramdas, A., Peña, J.: Margins, kernels and non-linear smoothed perceptrons. In: Proceedings of the 31st International Conference on Machine Learning, vol. 32, Beijing, China, 22–24 June. PMLR, pp. 244–252 (2014)

  25. Ramdas, A., Peña, J.: Towards a deeper geometric, analytic and algorithmic understanding of margins. Optim. Methods Softw. 31(2), 377–391 (2016)

    Article  MathSciNet  Google Scholar 

  26. Nutini, J., Sepehry, B., Laradji, I., Schmidt, M., Koepke, H., Virani, A.: Convergence rates for greedy Kaczmarz algorithms, and faster randomized Kaczmarz rules using the orthogonality graph. In: Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence, UAI’16, Arlington, Virginia, USA, 2016. AUAI Press, pp. 547–556 (2016)

  27. Petra, S., Popa, C.: Single projection Kaczmarz extended algorithms. Numer. Algorithms 73(3), 791–806 (2016)

    Article  MathSciNet  Google Scholar 

  28. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. In: Selected Papers of Alan J Hoffman: With Commentary. World Scientific, pp. 174–176 (2003)

  29. Xu Xiang, X., Liu, W.T., Dai, X.: An accelerated randomized extended Kaczmarz algorithm. J. Phys.: Conf. Ser. 814(1), 012017 (2017)

    Google Scholar 

  30. Morshed, M.S., Noor-E-Alam, M.: Generalized affine scaling algorithms for linear programming problems. Comput. Oper. Res. 114, 104807 (2020)

  31. Nesterov, Y.: A method for solving the convex programming problem with convergence rate \(o(1/k^{2})\). Soviet Mathematics Doklady, vol. 27, pp. 372–376 (1983)

  32. Nesterov, Y.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–161 (2013)

    Article  MathSciNet  Google Scholar 

  33. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course, 1st edn. Springer, New York (2014)

    MATH  Google Scholar 

  34. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103(1), 127–152 (2005)

    Article  MathSciNet  Google Scholar 

  35. Nesterov, Y.: Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM J. Optim. 22(2), 341–362 (2012)

    Article  MathSciNet  Google Scholar 

  36. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (art) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)

    Article  Google Scholar 

  37. Calafiore, G., El Ghaoui, L.: Optimization Models. Control Systems and Optimization Series. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  38. Lichman, M.: UCI machine learning repository. (2013). http://archive.ics.uci.edu/ml

  39. Yeh, I.-C., Lien, C.: The comparisons of data mining techniques for the predictive accuracy of probability of default of credit card clients. Expert Syst. Appl. 36(2), 2473–2480 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are truly grateful to the anonymous referees and the editor for their valuable comments and suggestions in the revision process which have greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Noor-E-Alam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morshed, M.S., Islam, M.S. & Noor-E-Alam, M. Accelerated sampling Kaczmarz Motzkin algorithm for the linear feasibility problem. J Glob Optim 77, 361–382 (2020). https://doi.org/10.1007/s10898-019-00850-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10898-019-00850-6

Keywords

Mathematics Subject Classification

Navigation