Skip to main content
Log in

Surface Modification of Polyacrylonitrile Fibers and their Application in the Preparation of Silver Nanoparticles

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

The chelating functional polymer, polyacryloamidoxime (PAAmF), is formed on the surface of polyacrylonitrile fibers (PANF) by the surface modification method. The characteristics of PAAmF with different modification times are monitored by Fourier transform infrared (FTIR) spectroscopy. Scanning electronic microscopy (SEM) reveals that the surface of PAAmF/PANF is rougher than that of the pristine PANF. Additionally, amidoxime chelating groups on the surface of PANF are the coordination sites for chelating Ag+, at which nano-sized silver nanoclusters are grown, using the reduction method. Silver nanoclusters are identified by X-ray diffraction (XRD) and SEM microscopy. SEM photographs demonstrate that the Ag nanoclusters are arranged loosely on the surface of the PANF with a wider-size distribution of 24.9 nm under reduction conditions of pH=5 and 30 °C. However, the distribution of the sizes of the Ag nanoclusters shrinks to 23.5 nm at pH=7. As the reaction temperature is increased to 60 °C, the Ag nanoclusters aggregate to ~29.8 nm as observed by SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Ozin (1992) Adv. Mater 4 612 Occurrence Handle10.1002/adma.19920041003

    Article  Google Scholar 

  2. E. Matijevic (1993) Chem. Mater. 5 412 Occurrence Handle10.1021/cm00028a004

    Article  Google Scholar 

  3. P. Barnickel A. Wokaun (1990) Mol. Phys. 69 1

    Google Scholar 

  4. Z. Y. Huang G. Mills B. Hajek (1993) J. Phys. Chem. 97 11542 Occurrence Handle10.1021/j100146a031

    Article  Google Scholar 

  5. C. Petit P. Lixon M. P. Pileni (1993) J. Phys. Chem. 97 12947 Occurrence Handle10.1021/j100151a054

    Article  Google Scholar 

  6. L. M. L. Marzan I. L. Tourino (1996) Langmuir 12 3585 Occurrence Handle10.1021/la951501e

    Article  Google Scholar 

  7. M. P. Pileni (1997) Langmuir 13 3266 Occurrence Handle10.1021/la960319q

    Article  Google Scholar 

  8. M. P. Pileni A. Taleb C. Petit (1998) J. Dis. Sci. Technol. 19 185

    Google Scholar 

  9. W. Wang S. Efrima O. Regev (1998) Langmuir 14 602 Occurrence Handle10.1021/la9710177

    Article  Google Scholar 

  10. R. B. Bright M. D. Musick M. J. Natan (1998) Langmuir 14 5695 Occurrence Handle10.1021/la980138j

    Article  Google Scholar 

  11. T. Sun K. Seff (1994) Chem. Rev. 94 857 Occurrence Handle10.1021/cr00028a001

    Article  Google Scholar 

  12. M. Mostafavi J. L. Marignier J. Amblard J. Belloni (1989) Radiat. Phys. Chem. 34 605

    Google Scholar 

  13. P. Matejka B. Vlckova J. Vohidal P. Pancoska V. J. Baumrunk (1992) J. Phys. Chem. 96 1361 Occurrence Handle10.1021/j100182a063

    Article  Google Scholar 

  14. R. X. Liu B. W. Zhang H. X. Tang (1998) J. Appl. Polym. Soc. 70 7 Occurrence Handle10.1002/(SICI)1097-4628(19981003)70:1<7::AID-APP2>3.0.CO;2-V

    Article  Google Scholar 

  15. R. V. S. Alfaya Y. Gushikem (1999) J. Coll. Inter. Sci. 213 438 Occurrence Handle10.1006/jcis.1998.6032

    Article  Google Scholar 

  16. M. L. Hassan N. A. E. Wakil (2003) J. Appl. Polym. Sci. 87 666 Occurrence Handle10.1002/app.11402

    Article  Google Scholar 

  17. N. Pekel N. Sahiner O. Guven (2004) J. Polym. Sci.: Part B: Polym. Phys. 42 986 Occurrence Handle10.1002/polb.10738

    Article  Google Scholar 

  18. S. H. Choi Y. C. Nho (2000) Radiat. Phys. Chem. 57 187 Occurrence Handle10.1016/S0969-806X(99)00348-5

    Article  Google Scholar 

  19. N. M. E. Sawy (2000) Polym. Int. 49 533 Occurrence Handle10.1002/1097-0126(200006)49:6<533::AID-PI407>3.0.CO;2-3

    Article  Google Scholar 

  20. M. E. McComb H. D. Gesser (1997) Anal. Chem. Acta 341 229 Occurrence Handle10.1016/S0003-2670(96)00491-6

    Article  Google Scholar 

  21. M. Ulbricht G. Belfort (1996) J. Memb. Sci. 111 193 Occurrence Handle10.1016/0376-7388(95)00207-3

    Article  Google Scholar 

  22. Z. Zahang L. Zhang S. Wang W. Chen Y. Lei (2001) Polymer 42 8315 Occurrence Handle10.1016/S0032-3861(01)00285-3

    Article  Google Scholar 

  23. H. C. Kim Y. D. Kong (1996) Polym. Sci. Technol. 7 59

    Google Scholar 

  24. Y. Y. Sang H. J. Sung (2003) Polym. Int. 52 1053 Occurrence Handle10.1002/pi.1215

    Article  Google Scholar 

  25. S. Jain (1984) Text. Res. J. 54 742

    Google Scholar 

  26. S. He J. Yao H. G. Gao S. Pang (2001) J. Phy. D: Appl. Phy. 34 3425 Occurrence Handle10.1088/0022-3727/34/24/301

    Article  Google Scholar 

  27. P. Scherrer (1918) Nachr. Ges. Wiss. Gottingen 2 98

    Google Scholar 

  28. H. P. Klug L. E. Alezander (1974) X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials EditionNumber2 John Wiley & Sons New York

    Google Scholar 

  29. H. Borcher E. V. Shevchenko A. Robert I. Mekis A. Kornowski G. Grubel H. Weller (2005) Langmuir 21 1931 Occurrence Handle10.1021/la0477183 Occurrence Handle15723491

    Article  PubMed  Google Scholar 

  30. D. V. Goia and E. Matijevic, New J. Chem. 1203 (1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuh-Yung Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, YC., Tseng, CH., Hung, KT. et al. Surface Modification of Polyacrylonitrile Fibers and their Application in the Preparation of Silver Nanoparticles. J Inorg Organomet Polym 15, 309–317 (2005). https://doi.org/10.1007/s10904-005-7871-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-005-7871-8

Key words

Navigation