Skip to main content
Log in

Phenolic Resin/Octa(aminophenyl)-T8-Polyhedral Oligomeric Silsesquioxane (POSS) Hybrid Nanocomposites: Synthesis, Morphology, Thermal and Mechanical Properties

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Octa(aminophenyl)-T8-polyhedral silsesquioxane, 1, can serve as a cross-linking agent for organic polymeric resins. Amino functional groups of 1 can form chemical bonds or hydrogen-bonds to appropriate matrix polymers or resins. Various resole phenolic resin/1 nanocomposites (0, 1, 3, 6, and 12 wt% 1) were prepared. Hydrogen bonding between phenolic hydroxyls and the amino groups of 1 in these nanocomposites were investigated by FT-IR. The aggregation morphologies of 1 within these samples were examined using SEM, TEM, and Wide Angle X-ray Diffraction (WAXD) studies. Small quasispherical nanometer-sized POSS particles which were further aggregated into clusters, like individual grapes in a bunch, formed into phase-separated domains as large as 400 nm in diameter as the loading of 1 increased. These particles exhibited a broad 2θ = 5.8° WAXD peak indicating the presence of some crystalline order within the nanoparticles of 1 making up the aggregates. This corresponds to an average crystalline plane lattice distance of 17.5 Å. However, extraction of the finely powdered nanocomposites by refluxing THF failed to remove 1 indicating the vast majority of 1 must be chemically bound. Thus, the aggregates must have resin within their structure. The storage modulus (E') in both the glassy and rubbery regions, thermal stability, and glass transition temperature of the composites were improved by 1 wt% 1. However, at high loadings of 1, these properties gradually decreased. Surface extractions by THF removed only a portion of the 1 in the surface regions based on X-EDS analyses for Si, suggesting that a portion of 1 might chemically bond into the phenolic resin matrix during the cure. As the loading of 1 increased, the content of 1 at specific surface locations gradually tends to increase and confirmed excellent dispersion of 1 in the micron size-scale at all locations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Ellsworth M. W., Gin D. L. (1999) Polym. News 24:331

    CAS  Google Scholar 

  2. Qannelis E. P. (1996) Adv. Mater 8:29

    Article  Google Scholar 

  3. Krishnamoorti, R.; Vaia, R. A. eds. Polymer Nanocomposites: Synthesis, Characterization and Modeling, (Amerixal Chemical Scoiety, Washington, DC 2003)

  4. Nalwa, H. S. ed. Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, (American Scientific Publishers, Stevenson Ranch, 2003) Calif., p. 385

  5. Abd-El-Aziz A., Carraher C. E., Jr. Pittman C. U., Jr. Zeldin M. (2005) Macromolecules Containing Metal and Metal-like Elements, vol 7 Nanoscale Interactions of Metal-Containing Polymers. John Wiley and Sons, Hobokin NJ, pp. 234

    Google Scholar 

  6. POSS is a registered trademark of Hybrid Plastics, www.hybridplastics.com.

  7. Baney R. H., Itoh M., Sakakibara A., Suzuki T. (1995) Chem. Rev. 95:1409

    CAS  Google Scholar 

  8. Pittman C. U., Jr. Li G. Z., Ni H. (2003) Macromo. Symp. 196:301

    Article  CAS  Google Scholar 

  9. Li G. Z., Wang L. C., Ni H., Pittman C. U. Jr. (2001) Inorg. Organomet. Polym. 11:123

    Article  CAS  Google Scholar 

  10. Li G. Z., Pittman C. U. Jr. (2005) In: Abd-El-Aziz A., Carraher C. E. Jr. Pittman C. U., Jr. Zeldin M. (eds) Chapter 5 Macromolecules Containing Metals and Metal-Like Elements Group IVA Polymers. Vol 4, John Wiley and Sons, Hoboken, NJ, pp. 79–132

    Chapter  Google Scholar 

  11. Strachota A., Kroutilová; I., Kovářová J., Matějka L. (2004) Macromolecules 37:9457

    Article  CAS  Google Scholar 

  12. Tamaki R., Tanaka Y., Asuncion M. Z., Laine R. M. (2001) J. Am. Chem. Soc. 123:12416

    Article  CAS  Google Scholar 

  13. Lee A., Lichtenhan J. D. (1998) Macromolecules 31:4970

    Article  CAS  Google Scholar 

  14. Li G. Z., Wang L. C., Toghiani H., Daulton T. L., Koyama K., Pittman C. U. Jr. (2001) Macromolecules 34:8686

    Article  CAS  Google Scholar 

  15. Abad M. J., Barral L., Fasce D. P., Williams J. J. (2003) Macromolecules 36:3128

    Article  CAS  Google Scholar 

  16. Matĕjka L., Strachota A., Pleštil J., Whelan P., Steinhart M., Šlouf M. (2004) Macromolecules 37:9449

    Article  CAS  Google Scholar 

  17. Baker E. S., Gidden J., Anderson E. S., Haddad T. S., Bowers M. T. (2004) Nano letters 4:779

    Article  CAS  Google Scholar 

  18. Choi J., Kim S. G., Laine R. M. (2004) Macromolecules 37:99

    Article  CAS  Google Scholar 

  19. Liu H., Zheng S., Nie K. (2005) Macromolecules 38:5088

    Article  CAS  Google Scholar 

  20. Li G. Z., Cho H., Wang L. C., Toghiani H., Pittman C. U. Jr. (2004) J Polym Sci Part A: Polym Chem 43:355

    Article  CAS  Google Scholar 

  21. Huang Q. R., Volksen W., Huang E., Toney M., Frank C. W., Miller R. D. (2002) Chem. Mater. 14:3676

    Article  CAS  Google Scholar 

  22. Anderson S. E., Baker E. S., Mitchell C., Haddad T. S., Bowers M. T. (2005) Chem. Mater. 17:2537

    Article  CAS  Google Scholar 

  23. Kopesky E. T., Haddad T. S., McKinley G. H., Cohen R. E. (2005) Polymer 46:4743

    CAS  Google Scholar 

  24. Fu B. X., Yang L., Somani R. H., Zong S. X., Hsiao B. S., Phillips S., Blanski R., Ruth P. (2001) J. Polym. Sci. Part B: Polym. Phys. 39:2727

    Article  CAS  Google Scholar 

  25. Zheng L., Farris R. J., Coughlin E. B. (2001) Macromolecules 34:8034

    Article  CAS  Google Scholar 

  26. Zheng L., Waddon A. J., Farris R. J., Coughlin E. B. (2002) Macromolecules 35:2375

    Article  CAS  Google Scholar 

  27. Waddon A. J., Zheng L., Farris R.J., Coughlin E. B (2002) Nano lett. 2:1149

    Article  CAS  Google Scholar 

  28. Li G. Z., Wang L. C., Toghiani H., Pittman C. U. Jr. Daulton T. L. (2002) Polymer 43:4167

    Article  CAS  Google Scholar 

  29. Romo-Uribe A., Mather P. T., Haddad T. S., Lichtenhan J. D. (1998) J. Polym. Sci., Part B: Polym. Phys. 36:1857

    Article  CAS  Google Scholar 

  30. Lee A., Xiao J., Feher F. J. (2005) Macromolecules 38:438

    Article  CAS  Google Scholar 

  31. Constable G. S., Lesser A. J., Coughlin E. B. (2004) Macromolecules 37:1276

    Article  CAS  Google Scholar 

  32. Liang K. W., Li G. Z., Toghiani H., Koo J. H., Pittman C. U. Jr. (2005) J. Polym. Sci. Part A: Polym. Chem. 43:3887

    Article  CAS  Google Scholar 

  33. Liang K., Li G-Z., Toghiani H., Koo J. H., Pittman C. U. Jr. (2006) Chem. Mater. 18:301

    Article  CAS  Google Scholar 

  34. Li Y. J., Kuo S. W., Huang W. J., Lee H. Y., Chang F. C. (2004) J. Polym. Sci. Part B: Polym. Phys. 42:1127

    Article  CAS  Google Scholar 

  35. Zhang Y. D., Lee S. H., Yoonessi M., Liang K. W., Pittman C. U. Jr. (2006) Polymer 47:2984

    Article  CAS  Google Scholar 

  36. Tamaki R., Choi J., Laine R. M. (2003) Chem. Mater. 15:793

    Article  CAS  Google Scholar 

  37. Huang J. C., He C. B., Xiao Y., Mya K. Y., Dai J., Siow Y. P. (2003) Polymer 44:4491

    Article  CAS  Google Scholar 

  38. Huang J. C., Lim P. C., Lu S., Pallathadka P. K., Zeng K. Y., He C. B. (2005) Acta Materialia 53:2395

    Article  CAS  Google Scholar 

  39. Cho H. S., Liang K. W., Chatterjee S., Pittman C. U. Jr. (2005) J. Inorg. Organomet. P. 15(4):541

    Article  CAS  Google Scholar 

  40. R. M. Laine, R. Tamaki, J. Choi, Well-defined nanosized building blocks for organic/inorganic nanocomposites. WO 02/ 100867 A1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles U. Pittman Jr..

Additional information

This paper is dedicated to Professor Ian Manners who has greatly enriched the field of organometallic polymers. Canada’s loss is England’s gain, but at either location, chemistry wins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Y., Lee, S.H., Yoonessi, M. et al. Phenolic Resin/Octa(aminophenyl)-T8-Polyhedral Oligomeric Silsesquioxane (POSS) Hybrid Nanocomposites: Synthesis, Morphology, Thermal and Mechanical Properties. J Inorg Organomet Polym 17, 159–171 (2007). https://doi.org/10.1007/s10904-006-9074-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-006-9074-3

Keywords

Navigation