Skip to main content

Advertisement

Log in

Facile Fabrication of Mn2+ Doped Magnetite Microspheres as Efficient Electrode Material for Supercapacitors

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Supercapacitors with high power density and excellent cycle life are considered to be a promising energy storage system for electric vehicle application. Because of low cost and high abundant, the preparation of iron oxides-based supercapacitors has become significant. Here, we reported the preparation of magnetite supercapacitors by using a facile one-step solvothermal method, where Mn2+ has been used as the doping element to modify the electrochemical properties of Fe3O4. The simply prepared supercapacitor showed a much higher electrochemical capacitance in contrast to reported Fe3O4-based electrochemical capacitors. The electrochemical capacitance at this supercapacitor can be as high as 268.4 F g−1 when the Mn2+ doped reached 1.5 mmol. There was not significant decrease in the capacitance after recycling 600 at 2 A g−1 in KOH aqueous solution. The excellent properties in the supercapacitor share a promising prospect with the development of a next generation of high- performance energy storage devices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Liu, F. Li, L.P. Ma, H.M. Cheng, Advanced materials for energy storage. Adv. Mater. 22, E28–E62 (2010)

    Article  CAS  Google Scholar 

  2. J. Jiang, Y. Li, J. Liu, X. Huang, C. Yuan, X.W. Lou, Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166–5180 (2012)

    Article  CAS  Google Scholar 

  3. Z. Chen, J. Wen, C. Yan, L. Rice, H. Sohn, M. Shen, M. Cai, B. Dunn, Y. Lu, High-performance supercapacitors based on hierarchically porous graphite particles. Adv. Energy Mater. 1, 551–556 (2011)

    Article  CAS  Google Scholar 

  4. S. Wang, J. Zhang, P. Shang, Y. Li, Z. Chen, Q. Xu, N-doped carbon spheres with hierarchical micropore-nanosheet networks for high performance supercapacitors. Chem. Commun. 50, 12091–12094 (2014)

    Article  CAS  Google Scholar 

  5. C. Liu, J. Wang, J. Li, M. Zeng, R. Luo, J. Shen, X. Sun, W. Han, L. Wang, Synthesis of N-doped hollow-structured mesoporous carbon nanospheres for high-performance supercapacitors. ACS Appl. Mater. Interfaces 8, 7194–7204 (2016)

    Article  CAS  Google Scholar 

  6. H. Wang, Y. Liang, M. Gong, Y. Li, W. Chang, T. Mefford, J. Zhou, J. Wang, T. Regier, F. Wei, H. Dai, An ultrafast nickel-iron battery from strongly coupled inorganic nanoparticle/nanocarbon hybrid materials. Nat. Commun. 3, 917–924 (2012)

    Article  Google Scholar 

  7. X. Zheng, X. Yan, Y. Sun, Y. Yu, G. Zhang, Y. Shen, Q. Liang, Q. Liao, Y. Zhang, Temperature-dependent electrochemical capacitive performance of the α-Fe2O3 hollow nanoshuttles as supercapacitor Electrodes. J. Colloid Interface Sci. 466, 291–296 (2016)

    Article  CAS  Google Scholar 

  8. G. Binitha, M.S. Soumya, A.A. Madhavan, P. Praveen, A. Balakrishnan, K.R.V. Subramanian, M.V. Reddy, S.V. Nair, A.S. Nair, N. Sivakumar, Electrospun α-Fe2O3 nanostructures for supercapacitor applications. J. Mater. Chem. A 1, 11698–11704 (2013)

    Article  CAS  Google Scholar 

  9. J. Liu, E. Lee, Y.T. Kim, Y.U. Kwon, Ultra-high Capacitance hematite thin films with controlled nanoscopic morphologies. Nanoscale 6, 10643–10649 (2014)

    Article  CAS  Google Scholar 

  10. M. Zhu, Y. Wang, D. Meng, X. Qin, G. Diao, Hydrothermal synthesis of hematite nanoparticles and their electrochemical properties. J. Phys. Chem. C 116, 16276–16285 (2012)

    Article  CAS  Google Scholar 

  11. M. Zhu, Y. Wang, X. Zhang, Hydrothermal synthesis of akaganeite nanorods and their electrochemical properties. J. Inorg. Organomet. Polym. 25, 982–985 (2015)

    Article  CAS  Google Scholar 

  12. L. Wang, X. Zhang, S. Wang, Y. Li, B. Qian, X. Jiang, G. Yang, Ultrasonic-assisted synthesis of amorphous Fe3O4 with a high specific surface area and improved capacitance for supercapacitor. Powder Technol. 256, 499–505 (2014)

    Article  CAS  Google Scholar 

  13. Y. Lin, X. Wang, G. Qian, J.J. Watkins, Additive-driven self-assembly of well-ordered mesoporous carbon/iron oxide nanoparticle composites for supercapacitors. Chem. Mater. 26, 2128–2137 (2014)

    Article  CAS  Google Scholar 

  14. Y. Qiu, Y. Zhao, X. Yang, W. Li, Z. Wei, J. Xiao, S.F. Leung, Q. Lin, H. Wu, Y. Zhang, Z. Fan, S. Yang, Three-dimensional metal/oxide nanocone arrays for high-performance electrochemical pseudocapacitors. Nanoscale 6, 3626–3631 (2014)

    Article  CAS  Google Scholar 

  15. A.B. Deshmukh, M.V. Shelke, Synthesis and electrochemical performance of a single walled carbon nanohorn–Fe3O4 nanocomposite supercapacitor electrode. RSC Adv. 3, 21390–21393 (2013)

    Article  CAS  Google Scholar 

  16. S. Yang, X. Song, P. Zhang, J. Sun, L. Gao, Self-assembled α-Fe2O3 mesocrystals/graphene nanohybrid for enhanced electrochemical capacitors. Small 10, 2270–2279 (2014)

    Article  CAS  Google Scholar 

  17. Y. Li, L. Kang, G. Bai, P. Li, J. Deng, X. Liu, Y. Yang, F. Gao, W. Liang, Solvothermal synthesis of Fe2O3 loaded Activated carbon as electrode materials for high-performance electrochemical capacitors. Electrochim. Acta 134, 67–75 (2014)

    Article  CAS  Google Scholar 

  18. J. Mu, B. Chen, Z. Guo, M. Zhang, Z. Zhang, P. Zhang, C. Shao, Y. Liu, Highly dispersed Fe3O4 nanosheets on one-dimensional carbon nanofibers: synthesis, formation mechanism, and electrochemical performance as supercapacitor electrode materials. Nanoscale 3, 5034–5040 (2011)

    Article  CAS  Google Scholar 

  19. Q. Qu, S. Yang, X. Feng, 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors. Adv. Mater. 23, 5574–5580 (2011)

    Article  CAS  Google Scholar 

  20. S. Liu, S. Guo, S. Sun, X.Z. You, Dumbbell-like Au-Fe3O4 nanoparticles: a new nanostructure for supercapacitors. Nanoscale 7, 4890–4893 (2015)

    Article  CAS  Google Scholar 

  21. X.F. Lu, X.Y. Chen, W. Zhou, Y.X. Tong, G.R. Li, α-Fe2O3@PANI core–shell nanowire arrays as negative electrodes for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 7, 14843–14850 (2015)

    Article  CAS  Google Scholar 

  22. J. Lai, K.V.P.M. Shafi,, K. Loos, A. Ulman, Y. Lee, T. Vogt, C. Estournès, Doping α-Fe2O3 nanoparticles with Mn(III) suppresses the transition to the α-Fe2O3 structure. J. Am. Chem. Soc. 125, 11470–11471 (2003)

    Article  CAS  Google Scholar 

  23. X. Zhang, H. Li, S. Wang, F.R.F. Fan, A.J. Bard, Improvement of hematite as photocatalyst by doping with tantalum. J. Phys. Chem. C 118, 16842–16850 (2014)

    Article  CAS  Google Scholar 

  24. J. Liu, C. Liang, H. Zhang, Z. Tian, S. Zhang, General strategy for doping impurities (Ge, Si, Mn, Sn, Ti) in hematite nanocrystals. J. Phys. Chem. C 116, 4986–4992 (2012)

    Article  CAS  Google Scholar 

  25. G.K. Pradhan, K.M. Parida, Fabrication, growth mechanism, and characterization of α-Fe2O3 nanorods. ACS Appl. Mater. Interfaces 3, 317–323 (2011)

    Article  CAS  Google Scholar 

  26. K. Jeyalakshmi, S. Vijayakumar, K.K. Purushothaman, G. Muralidharan, Nanostructured nickel doped β-V2O5 thin films for supercapacitor applications. Mater. Res. Bull. 48, 2578–2582 (2013)

    Article  CAS  Google Scholar 

  27. R. Peng, N. Wu, Y. Zheng, Y. Huang, Y. Luo, P. Yu, L. Zhuang, Large-scale synthesis of metal-ion-doped manganese dioxide for enhanced electrochemical performance. ACS Appl. Mater. Interfaces 8, 8474–8480 (2016)

    Article  CAS  Google Scholar 

  28. J. Li, Y. Ren, S. Wang, Z. Ren, J. Yu, Transition metal doped MnO2 nanosheets grown on internal surface of macroporous carbon for supercapacitors and oxygen reduction reaction electrocatalysts. Appl. Mater. Today 3, 63–72 (2016)

    Article  Google Scholar 

  29. G. Nie, X. Lu, J. Lei, Z. Jiang, C. Wang, Electrospun V2O5-Doped α-Fe2O3 composite nanotubes with tunable ferromagnetism for high-performance supercapacitor electrodes. J. Mater. Chem. A 2, 15495–15501 (2014)

    Article  CAS  Google Scholar 

  30. H. Deng, X. Li, Q. Peng, X. Wang, J. Chen, Y. Li, Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 44, 2782–2785 (2005)

    Article  CAS  Google Scholar 

  31. L.P. Zhu, W.D. Zhang, H.M. Xiao, Y. Yang, S.Y. Fu, Facile synthesis of metallic Co hierarchical nanostructured microspheres by a simple solvothermal process. J. Phys. Chem. C 112, 10073–10078 (2008)

    Article  CAS  Google Scholar 

  32. M. Zhu, X. Zhang, Y. Zhou, C. Zhuo, J. Huang, S. Li, Facile solvothermal synthesis of porous ZnFe2O4 microspheres for capacitive pseudocapacitors. RSC Adv. 5, 39270–39277 (2015)

    Article  CAS  Google Scholar 

  33. K. Yang, Y. Dai, B. Huang, Origin of the photoactivity in boron-doped anatase and rutile TiO2 Calculated from first principles. Phys. Rev. B 76, 195201 (2007)

    Article  Google Scholar 

  34. K. Yang, Y. Dai, B. Huang, Density functional study of boron-doped anatase TiO2. J. Phys. Chem. C 114, 19830–19834 (2010)

    Article  CAS  Google Scholar 

  35. X. Zhao, C. Johnston, A. Crossley, P.S. Grant, Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors. J. Mater. Chem. 20, 7637–7644 (2010)

    Article  CAS  Google Scholar 

  36. L. Wang, H. Ji, S. Wang, L. Kong, X. Jiang, G. Yang, Preparation of Fe3O4 with high specific surface area and improved capacitance as a supercapacitor. Nanoscale 5, 3793–3799 (2013)

    Article  CAS  Google Scholar 

  37. Q. Maqbool, C. Singh, A. Paul, A. Srivastava, Uniform spheroidal nanoassemblies of magnetite using tween surfactants: influence of surfactant structure on the morphology and electrochemical performance. J. Mater. Chem. C 3, 1610–1618 (2015)

    Article  CAS  Google Scholar 

  38. K. Bhattacharya, P. Deb, Hybrid nanostructured C-dot decorated Fe3O4 electrode materials for superior electrochemical energy storage performance. Dalton Trans. 44, 9221–9229 (2015)

    Article  CAS  Google Scholar 

  39. D. Liu, X. Wang, X. Wang, W. Tian, J. Liu, C. Zhi, D. He, Y. Bando, D. Golberg, Ultrathin nanoporous Fe3O4-carbon nanosheets with enhanced supercapacitor performance. J. Mater. Chem. A 1, 1952–1955 (2013)

    Article  CAS  Google Scholar 

  40. C. Fu, A. Mahadevegowda, P.S. Grant, Fe3O4/carbon nanofibres with necklace architecture for enhanced electrochemical energy storage. J. Mater. Chem. A 3, 14245–14253 (2015)

    Article  CAS  Google Scholar 

  41. X. Du, C. Wang, M. Chen, Y. Jiao, J. Wang, Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J. Phys. Chem. C 113, 2643–2646 (2009)

    Article  CAS  Google Scholar 

  42. P.M. Hallam, M. Gómez-Mingot, D.K. Kampouris, C.E. Banks, Facile synthetic fabrication of iron oxide particles and novel hydrogen superoxide supercapacitors. RSC Adv. 2, 6672–6679 (2012)

    Article  CAS  Google Scholar 

  43. E. Mitchell, R.K. Gupta, K. Mensah-Darkwa, D. Kumar, K. Ramasamy, B.K. Gupta, P. Kahol, Facile synthesis and morphogenesis of superparamagnetic iron oxide nanoparticles for high-performance supercapacitor applications. New J. Chem. 38, 4344–4350 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was performed with supports from the National Natural Science Foundation of China (Grant Nos. 21403091, and 51473070), Jiangsu Province for the support under the innovation/entrepreneurship program (Surencaiban [2015]26), the Natural Science Foundation of Jiangsu Province (Grant No. BK20130486 and SBK2014041874) and the Jiangsu University (Grant No. 12JDG093).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maiyong Zhu or Songjun Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Kan, J., Zhang, F. et al. Facile Fabrication of Mn2+ Doped Magnetite Microspheres as Efficient Electrode Material for Supercapacitors. J Inorg Organomet Polym 27, 542–551 (2017). https://doi.org/10.1007/s10904-017-0496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0496-x

Keywords

Navigation