Skip to main content
Log in

Synthesis and Characterisation of PrMn1−XBXO3 (B = Fe, Ni) as Catalysts for Oxidation of Volatile Organic Compounds

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

PrMn1−XBXO3 (B = Fe, Ni, x = 0.2, 0.4, 0.6, 0.8) perovskites were synthesised by co-precipitation and citrate precursor sol–gel method (CPSG). X-ray diffraction patterns indicate improved crystalline nature of materials synthesised by CPSG method. BET surface area values were highest for PrMn0.4Fe0.6O3 (14.25 m2/g) and PrMn0.6Ni0.4O3 (26.61 m2/g) and morphological analysis by scanning electron microscopy revealed porous nature of materials when synthesised by sol gel method. Particle size derived from transmission electron microscopy was smallest for PrMn1−XNiXO3 (CPSG) series (20–120nm). X-ray photoelectron spectroscopy spectra suggest surface enrichment of Pr3+ ions in PrMn0.4Fe0.6O3 and PrMn0.6Ni0.4O3 for perovskites prepared by citrate precursor method. Catalytic oxidation of volatile organic compound (VOC) was carried out over PrMn0.4Fe0.6O3 and PrMn0.6Ni0.4O3. Under the reaction conditions (VOC concentration = 1 vol%, flow rate 150 ml/min) the catalysts gave a conversion efficiency of 82% and 94% for PrMn0.4Fe0.6O3 and PrMn0.6Ni0.4O3 respectively. The perovskite materials are therefore potential catalysts for the oxidation of VOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.B. Meadowcroft, Nature 226, 847–848 (1970)

    Article  CAS  Google Scholar 

  2. R.J.H Voorhove, J.P. Remeika, P.E. Freeland, B.T. Mathias, Science 177, 353–354 (1972)

    Article  Google Scholar 

  3. P. Femina, P. Sanjay, Res. J. Recent Sci. 1(ISC-2011), 178–184 (2012)

    Google Scholar 

  4. T. Rajesh, A.K. Rajarajan, C.S. Gopinath, R.N. Devi, J. Phys. Chem. C 116(17), 9526–9532 (2012)

    Article  CAS  Google Scholar 

  5. P. Doggali, F. Grasset, O. Cador, S. Rayalu, Y. Teraoka, N. Labhsetwar, J. Environ. Chem. E 2(1), 340–343 2014

    Article  CAS  Google Scholar 

  6. A. Garg, S. Saha, V. Rastogi, S. Chand, Int. J. Chem. Technol. 10(3), 305–310 (2003)

    CAS  Google Scholar 

  7. C. Zhang, C. Wang, W. Hua, Y. Guo, G Lu, S. Gil, A. Giroir-Fendler, Appl. Catal. B 186, 173–183 (2016)

    Article  CAS  Google Scholar 

  8. C. Singh, M. Rakesh, Int. J. Chem. Technol. 17, 451–454 (2010)

    CAS  Google Scholar 

  9. C. Singh, A. Wagle, M. Rakesh, Vacuum XXX, 1–6 (2017). doi:10.1016/j.vacuum.2017.06.039

    Google Scholar 

  10. C. Zhang, W. Hua, C. Wang, Y. Guo, G. Lu, A. Baylet, A. Giroir-Fendler, Appl. Catal. B 134–135, 310–315 (2013)

    Article  Google Scholar 

  11. S.-X. Chen, Y. Wang, A.-P. Jia, H.-H. Liu, M.-F. Luo, J.-Q. Lu, Appl. Surf. Sci. 307, 178–188 (2014)

    Article  CAS  Google Scholar 

  12. R. Doshi, C.B. Alcock, J.J. Carberry, Catal. Lett. 18, 337–343 (1993)

    Article  CAS  Google Scholar 

  13. G. Sinquin, C. Petit, S. Libs, J.P. Hindermann, A. Kiennemann, Appl. Catal. B 27(2), 105–115 2000

    Article  CAS  Google Scholar 

  14. C. Singh, M. Rakesh, IJEMS 16, 288–290 (2009)

    CAS  Google Scholar 

  15. F.N. Aguero, M.R. Lorales, S. Larregola, E.M. Izurieta, E. Lopez, L.E. Cadus. Int. J. Hydrogen Energy 40(45), 15510–15520 (2015)

    Article  CAS  Google Scholar 

  16. G. Virendra, S. Singh, M. Rakesh, Int. J. ChemTech. Res. 7(7), 3000–3003 (2015)

    CAS  Google Scholar 

  17. K. Vidal, A. Moran-Ruiz, A. Larranaga, J.M. Porras-Vazquez, P.R. Slater, M.I. Arriortua, Solid State Ionics 269, 24–29 (2015)

    Article  CAS  Google Scholar 

  18. J.D.G. Fernandes, D.M.A. Melo, L.B. Zinner, C.M. Salustiano, Z.R. Silva, A.E. Martinelli, M. Cerqueira, C. Alves Jr, E. Longo, M.I.B. Bernardi, Mater. Lett. 53, 122–125 (2002)

    Article  CAS  Google Scholar 

  19. S. Banerjee, V.R. Choudhary, J. Chem. Sci. 112(5), 535–542 (2000)

    Article  CAS  Google Scholar 

  20. T. Hyodo, M. Hayashi, N. Miura, N. Yamazoe, J. Electrochem. Soc 143, L266 (1996)

    Article  CAS  Google Scholar 

  21. K Stephan, M Hackenberger, B Kiebling, G Wendt, Chem. Eng. Technol. 25(5), 565–571 (2002)

    Article  CAS  Google Scholar 

  22. R. Ran, X. Wu, C. Quan, D. Weng, Solid State Ion. 176, 965–971 (2005)

    Article  CAS  Google Scholar 

  23. P. Doggali, Y. Teraoka, S. Rayalu, N. Labhsetwa, JECE, 3(1), 420–428 (2015)

    CAS  Google Scholar 

  24. T. Seiyama, N. Yamazoe, K. Eguchi, Ind. Eng. Chem. Prod. Res. Dev. 24(1), 19–27 (1985)

    Article  CAS  Google Scholar 

  25. C. Zhang, C. Wang, W. Zhan, W. Guo, Y. Guo, G. Lu, A. Baylet, A. Giroir-Fendler, Appl. Catal. B 129, 509–516 (2013)

    Article  CAS  Google Scholar 

  26. M.J. Koponen, T. Venalainen, M. Suvanto, K. Kallinen, T.J. Kinnunen, M. Harkonen, T.A. Pakkanen, Appl. Catal. A 311(1), 79–85 2006

    Article  CAS  Google Scholar 

  27. M. Mihalik, Z. Jaglicic, M. Fitta, V. Kavecanský, K. Csach, A. Budziak, J. Briancin, M. Zentkova, M. Mihalik, J. Alloys Compd. 687, 652–661 (2016)

    Article  CAS  Google Scholar 

  28. NIOSH Manual of Analytical methods 4th edition (2003), https://www.cdc.gov/niosh/docs/2003-154/pdfs/1003.pdf

  29. MDHS 96 Volatile organic compounds in air - laboratory method using pumped solid sorbent tubes, solvent desorption and gas chromatography, http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs96.pdf

  30. G. Pecchi, P. Reyes, R. Zamora, L.E. Cadus, J.L.G. Fierro, J. Solid State Chem. 181, 905–912 (2008)

    Article  CAS  Google Scholar 

  31. J. Blasco, M.C. Sanchez, J. Perez-Cacho, J. Garcia, G. Subias, J. Campo, J. Phys. Chem. Solids 63, 781–792 (2002)

    Article  CAS  Google Scholar 

  32. A.E. Danks, S.R. Hall, Z. Schnepp, Mater. Horiz. 3, 91–112 (2016)

    Article  CAS  Google Scholar 

  33. Y. Li, L. Xue, L. Fan, Y. Yan, J. Alloys Compd. 478, 493–497 (2009)

    Article  CAS  Google Scholar 

  34. Y. Suchorski, R. Wrobel, S. Becker, A. Opalinska, U. Narkiewicz, M. Podsiadly, H. Weiss, Acta Phys. Pol. A 114, S125–S133 (2008)

    Article  CAS  Google Scholar 

  35. R. Broer, W.A. de Jong, W.C. Nieuwpoort, Phys. Rev. Lett. 84(10), 2259–2262 2000

    Article  Google Scholar 

  36. T. Yamashita, P. Hayes, Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  CAS  Google Scholar 

  37. H.W. Nesbitt, D. Legrand, G.M. Bancroft, Phys. Chem. Miner. 27(5), 357–366 (2000)

    Article  CAS  Google Scholar 

  38. A. De Paoli, A.A. Barresi, Ind. Eng. Chem. Res. 40, 1460–1464 (2001)

    Article  Google Scholar 

  39. S. Royer, D. Duprez, F. Can, X. Courtois, C. Batiot-Dupeyrat, S. Laassiri, H. Alamdari, Chem. Rev. 114(20), 10292–10368 (2014)

    Article  CAS  Google Scholar 

  40. Z. Yu, L. Gao, S. Yuan, Y. Wu, J. Chem. Soc. Faraday Trans. 88, 3245–3249 (1992)

    Article  CAS  Google Scholar 

  41. S.A. Oskoui, A. Niasi, H.-H. Tseng, D. Salari, B. Izadkhah, S.A. Hosseini, ACS Comb. Sci. 15, 609–621 (2013)

    Article  CAS  Google Scholar 

  42. H. Tanak, M. Misono, Curr. Opin. Solid State Mater. Sci. 5, 381–387 (2001)

    Article  Google Scholar 

  43. A. Tarjomannejad, A. Niaei, A. Farzi, D. Salari, P.R. Zonouz, Catal. Lett. 146(8), 1544–1551 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by Department of Science & Technology (DST), Government of India vide reference no. SR/WOS-A/CS-1047/2014 under Women Scientist Scheme. The authors would like to thank National Environmental and Engineering Research Institute, CSIR-NEERI, Mumbai for consistent scientific and technical support. The Authors are grateful to Icon Analytical Laboratory, Mumbai (SEM-EDS facility), Department of Metallurgical Engineering & Material Science, MEMS, and IIT-Bombay (XRD and facility), Sophisticated Analytical Instrument Facility, SAIF, IIT-Bombay (TEM and ICP-AES facilities) and Advanced Centre for Material Science, ACMS, IIT-Kanpur (XPS facility).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meeta Rakesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Rakesh, M. Synthesis and Characterisation of PrMn1−XBXO3 (B = Fe, Ni) as Catalysts for Oxidation of Volatile Organic Compounds. J Inorg Organomet Polym 27, 1719–1729 (2017). https://doi.org/10.1007/s10904-017-0635-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0635-4

Keywords

Navigation