Skip to main content
Log in

Synthesis and Magnetic Characterization of Cu Substituted Barium Hexaferrites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Cu2+ ion substituted nanocrystalline BaFe12O19 [Ba1 − xCuxFe12O19 (0.0 ≤ x ≤ 0.5)] hexaferrite powders were synthesized by sol–gel combustion route and its effects on structure, morphology and magnetic properties of barium hexaferrite (BaFe12O19) were presented. X-Ray Powder Diffraction (XRD), Scanning Electron Microscopy (HR-SEM), Transmission Electron Microscopy (HR-TEM) and Fourier Transform Infrared (FT-IR) analyses revealed the M-type hexagonal structure of all samples. Vibrating sample magnetometer (VSM) analyses showed that all samples have strong ferromagnetic behavior at room temperature. The crystallite size varies in a range of 23.30–35.12 nm. Both HR-SEM and HR-TEM analyses confirmed the hexagonal morphology for products. A minimum of 40.49 and a maximum of 54.36 emu/g estimated specific saturation magnetization (σs) were observed for Ba0.5Cu0.5Fe12O19 and Ba0.9Cu0.1Fe12O19 NPs, respectively. The remnant magnetization (σr) has a minimum value of 21.27 emu/g belonging to Ba0.5Cu0.5Fe12O19 and has a maximum value of 28.15 emu/g belonging to Ba0.7Cu0.3Fe12O19 NPs. The coercive fields are between 1726 Oe and 2853 Oe. K eff (calculated effective anisotropy constants) is changing from 2.31 × 105 to 3.23 × 105 Ergs/g. It was observed that the strong magneto-crystalline anisotropy fields, (H a ) above 11.0 kOe for all samples which confirmed that all samples are hard magnet. Due to their small crystallite size (smaller than 50 nm) and high saturation magnetization, Ba1 − xCuxFe12O19 (0.0 ≤ x ≤ 0.5) nanoparticles can be employed as magnetic recording materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. I. Auwal, A. Baykal, H. Güngüneş, S.E. Shirsath, Structural investigation and hyperfine interactions of BaBixLaxFe12–2xO19 (0.0 ≤ x ≤ 0.5) hexaferrites. Ceram. Int. 42, 3380–3387 (2016)

    Article  CAS  Google Scholar 

  2. A. Trukhanov, S. Trukhanov, L. Panina, V. Kostishyn, I. Kazakevich, A.V. Trukhanov, E. Trukhanova, V. Natarov, V. Turchenko, M. Salem, Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Magn. Magn. Mater. 426, 487–496 (2017)

    Article  CAS  Google Scholar 

  3. A. Baykal, I. Auwal, S. Güner, H. Sözeri, Magnetic and optical properties of Zn2+ ion substituted barium hexaferrites. J. Magn. Magn. Mater. 430, 29–35 (2017)

    Article  CAS  Google Scholar 

  4. V.N. Dhage, M. Mane, A. Keche, C. Birajdar, K. Jadhav, Structural and magnetic behaviour of aluminium doped barium hexaferrite nanoparticles synthesized by solution combustion technique. Phys. B 406, 789–793 (2011)

    Article  CAS  Google Scholar 

  5. S. Kanagesan, S. Jesurani, R. Velmurugan, S. Prabu, T. Kalaivani, Structural and magnetic properties of conventional and microwave treated Ni–Zr doped barium strontium hexaferrite. Mater. Res. Bull. 47, 188–192 (2012)

    Article  CAS  Google Scholar 

  6. S. Chang, S. Kangning, C. Pengfei, Microwave absorption properties of Ce-substituted M-type barium ferrite. J. Magn. Magn. Mater. 324, 802–805 (2012)

    Article  Google Scholar 

  7. R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by co-precipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)

    Article  CAS  Google Scholar 

  8. P. Kumar, A. Gaur, R. Kotnala, Magneto-electric response in Pb substituted M-type barium-hexaferrite. Ceram. Int. 43, 1180–1185 (2017)

    Article  CAS  Google Scholar 

  9. A. Mali, A. Ataie, Influence of the metal nitrates to citric acid molar ratio on the combustion process and phase constitution of barium hexaferrite particles prepared by sol–gel combustion method. Ceram. Int. 30, 1979–1983 (2004)

    Article  CAS  Google Scholar 

  10. Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hexaferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)

    Article  CAS  Google Scholar 

  11. M.N. Ashiq, M.J. Iqbal, M. Najam-ul-Haq, P.H. Gomez, A.M. Qureshi, Synthesis, magnetic and dielectric properties of Er–Ni doped Sr-hexaferrite nanomaterials for applications in High density recording media and microwave devices. J. Magn. Magn. Mater. 324, 15–19 (2012)

    Article  CAS  Google Scholar 

  12. M. Karmakar, B. Mondal, M. Pal, K. Mukherjee, Acetone and ethanol sensing of barium hexaferrite particles: a case study considering the possibilities of non-conventional hexaferrite sensor. Sens. Actuators B 190, 627–633 (2014)

    Article  CAS  Google Scholar 

  13. C. Valero-Luna, S. Palomares-Sanchéz, F. Ruiz, Catalytic activity of the barium hexaferrite with H2O2/visible light irradiation for degradation of Methylene Blue. Catal. Today 266, 110–119 (2016)

    Article  CAS  Google Scholar 

  14. Y. Chen, T. Sakai, T. Chen, S.D. Yoon, A.L. Geiler, C. Vittoria, V.G. Harris, Oriented barium hexaferrite thick films with narrow ferromagnetic resonance linewidth. Appl. Phys. Lett. 88, 062516 (2006)

    Article  Google Scholar 

  15. A. Mali, A. Ataie, Structural characterization of nano-crystalline BaFe12O19 powders synthesized by sol–gel combustion route. Scripta Mater. 53, 1065–1070 (2005)

    Article  CAS  Google Scholar 

  16. D.-H. Chen, Y.-Y. Chen, Synthesis of barium ferrite ultrafine particles by coprecipitation in the presence of polyacrylic acid. J. Colloid. Interface Sci. 235, 9–14 (2001)

    Article  CAS  Google Scholar 

  17. X.X. Liu, J.M. Bai, F.L. Wei, Z. Yang, La–Zn substituted hexagonal Sr ferrite thin films for high density magnetic recording. J. Appl. Phys. 87, 2503–2506 (2000)

    Article  CAS  Google Scholar 

  18. M. El-Hilo, H. Pfeiffer, K. O’Grady, W. Schüppel, E. Sinn, P. Görnert, M. Rösler, D.P. Dickson, R.W. Chantrell, Magnetic properties of barium hexaferrite powders. J. Magn. Magn. Mater. 129, 339–347 (1994)

    Article  CAS  Google Scholar 

  19. V. Sankaranarayanan, D. Khan, Mechanism of the formation of nanoscale M-type barium hexaferrite in the citrate precursor method. J. Magn. Magn. Mater. 153, 337–346 (1996)

    Article  CAS  Google Scholar 

  20. S. Chawla, R. Mudsainiyan, S. Meena, S. Yusuf, Sol–gel synthesis, structural and magnetic properties of nanoscale M-type barium hexaferrites BaCoxZrxFe(12–2x)O19, J. Magn. Magn. Mater. 350, 23–29 (2014)

    Article  CAS  Google Scholar 

  21. K.S. Martirosyan, D. Luss, Fabrication of metal oxide nanoparticles by highly exothermic reactions. Chem. Eng. Technol. 32, 1376–1383 (2009)

    Article  CAS  Google Scholar 

  22. S. Singhal, K. Kaur, S. Jauhar, S. Bhukal, S. Bansal, Structural and magnetic properties of BaCoxFe12xO19 (x = 0.2, 0.4, 0.6, &1. 0) nanoferrites synthesized via citrate sol-gel method. World J. Condens. Matter. Phys. 1, 101 (2011)

    Article  CAS  Google Scholar 

  23. Z. Durmus, A comparative study on magnetostructural properties of barium hexaferrite powders prepared by polyethylene glycol. J. Nanomater. 2014, 212 (2014)

    Article  Google Scholar 

  24. A. Baykal, H. Güngüneş, H. Sözeri, M. Amir, I. Auwal, S. Asiri, S. Shirsath, A.D. Korkmaz, Magnetic properties and Mössbauer spectroscopy of Cu-Mn substituted BaFe12O19 hexaferrites. Ceram. Int. 43, 15486–15492 (2017)

    Article  CAS  Google Scholar 

  25. S. El-Sayed, T. Meaz, M. Amer, H. El, Shersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Phys. B 426, 137–143 (2013)

    Article  CAS  Google Scholar 

  26. A. Demir, S. Güner, Y. Bakis, S. Esir, A. Baykal, Magnetic and optical properties of Mn1– xZnxFe2O4 nanoparticles. J. Inorg. Organomet. Polym. Mater. 24, 729–736 (2014)

    Article  CAS  Google Scholar 

  27. E.P. Wohlfarth, Ferromagnetic materials : a handbook on the properties of magnetically ordered substances, vol. 3 (North-Holland, Amsterdam, 1982)

    Google Scholar 

  28. B.D. Cullity, C.D. Graham, Introduction to magnetic materials. (Wiley, Hoboken, 2009)

    Google Scholar 

  29. M. Rashad, I. Ibrahim, Improvement of the magnetic properties of barium hexaferrite nanopowders using modified co-precipitation method. J. Magn. Magnetic Mater. 323, 2158–2164 (2011)

    Article  CAS  Google Scholar 

  30. B. Shirk, W. Buessem, Temperature dependence of Ms and K 1 of BaFe12O19 and SrFe12O19 single crystals. J. Appl. Phys. 40, 1294–1296 (1969)

    Article  CAS  Google Scholar 

  31. A. Hodaei, A. Ataie, E. Mostafavi, Intermediate milling energy optimization to enhance the characteristics of barium hexaferrite magnetic nanoparticles. J. Alloys Compd. 640, 162–168 (2015)

    Article  CAS  Google Scholar 

  32. Z. Zi, Y. Sun, X. Zhu, Z. Yang, W. Song, Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method. J. Magn. Magn. Mater. 320, 2746–2751 (2008)

    Article  CAS  Google Scholar 

  33. B. Rai, S. Mishra, V. Nguyen, J. Liu, Synthesis and characterization of high coercivity rare-earth ion doped Sr0.9RE0.1Fe10Al2O19 (RE: Y, La, Ce, Pr, Nd, Sm, and Gd). J. Alloys Compd. 550, 198–203 (2013)

    Article  CAS  Google Scholar 

  34. W.F. Brown Jr., Theory of the approach to magnetic saturation. Phys. Rev. 58, 736 (1940)

    Article  Google Scholar 

  35. M. Amir, M. Geleri, S. Güner, A. Baykal, H. Sözeri, Magneto optical properties of FeBxFe2–xO4 nanoparticles. J. Inorg. Organomet. Polym. Mater. 25, 1111–1119 (2015)

    Article  CAS  Google Scholar 

  36. M. Sadat, R. Patel, J. Sookoor, S.L. Bud’ko, R.C. Ewing, J. Zhang, H. Xu, Y. Wang, G.M. Pauletti, D.B. Mast, Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications. Mater. Sci. Eng. 42, 52–63 (2014)

    Article  CAS  Google Scholar 

  37. S. Chaudhury, S. Rakshit, S. Parida, Z. Singh, K.S. Mudher, V. Venugopal, Studies on structural and thermo-chemical behavior of MFe12O19 (s)(M = Sr, Ba and Pb) prepared by citrate–nitrate gel combustion method. J. Alloys Compd. 455, 25–30 (2008)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Baykal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asiri, S., Güner, S., Demir, A. et al. Synthesis and Magnetic Characterization of Cu Substituted Barium Hexaferrites. J Inorg Organomet Polym 28, 1065–1071 (2018). https://doi.org/10.1007/s10904-017-0735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-017-0735-1

Keywords

Navigation