Skip to main content
Log in

Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

This work reports the magnetite-functionalization and biological evaluation of eugenol by the co-precipitation method employed only Fe2+ under mild conditions and control from the amount of the incorporated magnetite. Magnetic nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), hydrodynamic size distribution (Zetasizer), and vibrating sample magnetometer (VSM). SEM images showed that EUG·Fe3O4 similar in shape to a nanoflower. The FTIR spectrum confirmed the presence of characteristic EUG and Fe3O4 bands in the EUG·Fe3O4 sample, the XRD analysis showed that the magnetite functionalization with eugenol slightly affected the Fe3O4 crystal structure, while the VSM measurements demonstrate that EUG·Fe3O4 1:1 shows a superparamagnetic behavior, suggesting small non-interacting particles. The in vitro safety profile and cytotoxicity of free eugenol, magnetite pristine, EUG·Fe3O4 1:1, EUG·Fe3O4 1:5, and EUG·Fe3O4 1:10 was investigated using human cell lines (keratinocytes and melanoma). The results demonstrate the high biocompatibility of EUG·Fe3O4 in HaCat cells and the greater specificity for the A375 cell line. Furthermore, the magnetite-functionalization with eugenol decreased the toxic effects of free eugenol on healthy cells. Antibacterial tests were performed in different bacterial strains. The experimental data showed that among the magnetic compounds, the microorganisms were only sensitive to treatment with EUG·Fe3O4 1:1. Regarding the antibiofilm activity assay, it can be observed that only the EUG·Fe3O4 caused a significant decrease in biomass when compared to the positive control. Finally, it can be concluded that EUG·Fe3O4 proves to be a potential candidate for future studies for drug delivery of cancer and bacterial infections treatments.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Chidambaram, R. Manavalan, K. Kathiresan, Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J. Pharm. Pharm. Sci. 14, 67–77 (2011)

    Article  PubMed  Google Scholar 

  2. S.Y. Wang, H.Z. Hu, X.C. Qing, Z.C. Zhang, Z.W. Shao, Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J. Cancer. 1, 69–82 (2020)

    Article  Google Scholar 

  3. C.R.B. Rhoden, F.S. Bruckmann, T.R. Salles, C.G. Kaufmann Jr., S.R. Mortari, Study from the influence of magnetite onto removal of hydrochlorothiazide from aqueous solutions applying magnetic graphene oxide. J. Water. Process. Eng. 43, 102262 (2021). https://doi.org/10.1016/j.jwpe.2021.102262

    Article  Google Scholar 

  4. A.R. Viana, B. Salles, F.S. Bruckmann, L.M.F. Krause, S.R. Mortari, C.R.B. Rhoden, Cytotoxicity study of graphene oxide against vero lineage cells. Discip. Sci. Sér. Ciên. Nat. Tecnol. 20, 355–364 (2019)

    Google Scholar 

  5. T.R. Salles, H.B. Rodrigues, F.B. Bruckmann, L.C.S. Alves, S.R. Mortari, C.R.B. Rhoden, Graphene oxide optimization synthesis for application on laboratory of Universidade Franciscana. Discip. Sci. Sér. Ciên. Nat. Tecnol. 21, 15–26 (2020)

    Google Scholar 

  6. N.W. El Khayat, A.A. Donia, O.Y. Mady, G.M. El Maghraby, Optimization of eugenol microemulsion for transdermal delivery of indomethacin. J. Drug Deliv. Sci. Technol. 48, 311–318 (2018)

    Article  Google Scholar 

  7. M. Lengyel, N. Kállai-Szabó, V. Antal, A.J. Laki, I. Antal, Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 87, 20 (2019). https://doi.org/10.3390/scipharm87030020

    Article  CAS  Google Scholar 

  8. A. Kogan, N. Garti, Microemulsions as transdermal drug delivery vehicles. Adv. Colloid Interface Sci. 123, 369–385 (2006)

    Article  PubMed  Google Scholar 

  9. C. Altinkok, G. Acik, H.R.F. Karabulut, M. Ciftci, M.A. Tasdelen, A. Dag, A. Synthesis and characterization of bile acid-based polymeric micelle as a drug carrier for doxorubicin. Polym. Adv. Technol. 32, 4860–4868 (2021)

    Article  CAS  Google Scholar 

  10. N. Shahabadi, A. Akbari, F. Karampour, M. Falsafi, Cytotoxicity and antibacterial activities of new chemically synthesized magnetic nanoparticles containing eugenol. J. Drug. Del. Sci. Technol. 49, 113–122 (2019)

    Article  CAS  Google Scholar 

  11. F.S. Bruckmann, A.C. Pimentel, A.R. Viana, T.R. Salles, L.M.F. Krause, S.R. Mortari, C.R.B. Rhoden, Synthesis, characterization and cytotoxicity evaluation of magnetic nanosilica in L929 cell line. Discip. Sci. Sér. Ciên. Nat. Tecnol. 21, 1–14 (2020)

    Google Scholar 

  12. R. Vakili-Ghartavol, A.A. Momtazi-Borojeni, Z. Vakili-Ghartavol, H.T. Aiyelabegan, M.R. Jaafari, S.M. Rezayat, S. Arbabibidgoli, Toxicity assessment of superparamagnetic iron oxide nanoparticles in different tissues. Artif. Cells. Nanomed. Biotechnol. 48, 443–451 (2020)

    Article  CAS  PubMed  Google Scholar 

  13. L.H. Reddy, J.L. Arias, J. Nicolas, P. Couvreur, Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem. rev. 112, 5818–5878 (2012)

    Article  CAS  PubMed  Google Scholar 

  14. P.U. Maheswari, R. Muthappa, K.P. Bindhya, K.M.S. Begum, Evaluation of folic acid functionalized BSA-CaFe2O4 nanohybrid carrier for the controlled delivery of natural cytotoxic drugs hesperidin and eugenol. J. Drug Deliv. Sci. Technol. 61, 102105 (2021). https://doi.org/10.1016/j.jddst.2020.102105

    Article  CAS  Google Scholar 

  15. E. Talón, M. Vargas, A. Chiralt, C. González-Martínez, Antioxidant starch-based films with encapsulated eugenol. Application to sunflower oil preservation. Lwt 113, 108290 (2019)

    Article  Google Scholar 

  16. F. Esmaeili, S. Rajabnejhad, A.R. Partoazar, S.E. Mehr, R. Faridi-Majidi, M. Sahebgharani, L. Syedmoradi, M.R. Rajabnejhad, A. Amani, Anti-inflammatory effects of eugenol nanoemulsion as a topical delivery system. Pharm. Dev. Technol. 21, 887–893 (2016)

    Article  CAS  PubMed  Google Scholar 

  17. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 65, 55–63 (1983)

    Article  CAS  PubMed  Google Scholar 

  18. E. Borenfreund, J.A. Puerner, Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol. Lett. 24, 119–124 (1985)

    Article  CAS  PubMed  Google Scholar 

  19. A.W. Bauer, W.M. Kirby, J.C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966)

    Article  CAS  PubMed  Google Scholar 

  20. CLSI. (2015). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Tenth Edition. CLSI DOCUMENTE M07-A10. In Wayne, PA: Clinical and Laboratory Standards Institute.

  21. S. Manner, M. Skogman, D. Goeres, P. Vuorela, A. Fallarero, Systematic exploration of natural and synthetic flavonoids for the inhibition of Staphylococcus aureus biofilms. Int. J. Mol. Sci. 14, 19434–19451 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. L.Q.S. Lopes, C.G. Santos, R.A. Vaucher, R.P. Raffin, R.C.V. Santos, Nanocapsules with glycerol monolaurate: effects on Candida albicans biofilms. Microb. Pathog. 97, 119–124 (2016)

    Article  CAS  PubMed  Google Scholar 

  23. K. Pramod, C.V. Suneesh, S. Shanavas, S.H. Ansari, J. Ali, Unveiling the compatibility of eugenol with formulation excipients by systematic drug-excipient compatibility studies. J. Anal. Sci. Technol. 6, 1–14 (2015)

    Article  Google Scholar 

  24. K.J. Datta, A.K. Rathi, V. Kumar, J. Kaslik, I. Medrik, V. Ranc, R.S. Varma, R. Zboril, M.B. Gawande, Synthesis of flower-like magnetite nanoassembly: application in the efficient reduction of nitroarenes. Sci. Rep. 7, 1–12 (2017)

    Article  Google Scholar 

  25. S. Tanaka, Y.V. Kaneti, N.L.W. Septiani, S.X. Dou, Y. Bando, M.S.A. Hossain, J. Kim, Y. Yamauchi, A review on iron oxide-based nanoarchitectures for biomedical, energy storage, and environmental applications. Small Methods. 3, 1800512 (2019). https://doi.org/10.1002/smtd.201800512

    Article  CAS  Google Scholar 

  26. Q. Wang, L. Zhang, W. Ding, D. Zhang, K. Reed, B. Zhang, Orthogonal optimization and physicochemical characterization of water-soluble gelatin-chitosan nanoparticles with encapsulated alcohol-soluble eugenol. Food Bioproc. Techol. 13, 1024–1034 (2020)

    Article  CAS  Google Scholar 

  27. P.A. Hartley, G.D. Parfitt, L.B. Pollack, The role of the van der Waals force in the agglomeration of powders containing submicron particles. Powder Technol. 42, 35–46 (1985)

    Article  CAS  Google Scholar 

  28. N. Lenin, A. Karthik, M. Sridharpanday, M. Selvam, S.R. Srither, S. Arunmetha, P. Paramasivam, V. Rajendran, Electrical and magnetic behavior of iron doped nickel titanate (Fe3+/NiTiO3) magnetic nanoparticles. J. Magn. Magn. Mater. 397, 281–286 (2016)

    Article  CAS  Google Scholar 

  29. M. Gonzales, L.M. Mitsumori, J.V. Kushleika, M.E. Rosenfeld, K.M. Krishnan, Cytotoxicity of iron oxide nanoparticles made from the thermal decomposition of organometallics and aqueous phase transfer with Pluronic F127. Contrast. Media. Mol. imaging. 5, 286–293 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. E. Catalano, In vitro biological validation and cytocompatibility evaluation of hydrogel iron-oxide nanoparticles. AIP Conf. Proc. 1873, 020011 (2017). https://doi.org/10.1063/1.4997140

    Article  CAS  Google Scholar 

  31. R.M. Amin, A. Abdelmonem, T. Verwanger, E. Elsherbini, B. Krammer, Cytotoxicity of magnetic nanoparticles on normal and malignant human skin cells. Nano Life. 4, 1440002 (2014). https://doi.org/10.1142/S1793984414400029

    Article  CAS  Google Scholar 

  32. C.G. Farcas, I. Macasoi, I. Pinzaru, M. Chirita, M.C. Chirita Mihaila, C. Dehelean, S. Avram, F. Loghin, L. Mocanu, V. Rotaru, A. Ieta, A. Ercuta, D. Coricovac, Controlled synthesis and characterization of micrometric single crystalline magnetite with superparamagnetic behavior and cytocompatibility/cytotoxicity assessments. Front. Pharmacol. 11, 410 (2020). https://doi.org/10.3389/fphar.2020.00410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R. Al Wafai, W. El-Rabih, M. Katerji, R. Safi, M. El Sabban, O. El-Rifai, J. Usta, Chemosensitivity of MCF-7 cells to eugenol: release of cytochrome-c and lactate dehydrogenase. Sci. Rep. 7, 1–13 (2017)

    Article  Google Scholar 

  34. M. Pisano, G. Pagnan, M. Loi, M.E. Mura, M.G. Tilocca, G. Palmieri, D. Fabbri, M.A. Dettori, G. Delogu, M. Ponzoni, C. Rozzo, Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol. cancer. 6, 1–12 (2007)

    Article  Google Scholar 

  35. S.K. Jaganathan, E. Supriyanto, Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 17, 6290–6304 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S.K. Jaganathan, A. Mazumdar, D. Mondhe, M. Mandal, Apoptotic effect of eugenol in human colon cancer cell lines. Cell. Biol. Int. 35, 607–615 (2011)

    Article  CAS  PubMed  Google Scholar 

  37. R. Ghosh, N. Nadiminty, J.E. Fitzpatrick, W.L. Alworth, T.J. Slaga, A.P. Kumar, Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J. Biol. Chem. 280, 5812–5819 (2005)

    Article  CAS  PubMed  Google Scholar 

  38. J.A. Jacob, J.M.M. Salmani, B. Chen, Magnetic nanoparticles: mechanistic studies on the cancer cell interaction. Nanotechnol. Rev. 5, 481–488 (2016)

    Article  CAS  Google Scholar 

  39. R.A. Revia, M. Zhang, Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Mater. Today. 19, 157–168 (2016)

    Article  CAS  Google Scholar 

  40. ISO, 10993–12. Biological evaluation of medical devices. Part 12: sample preparation and reference materials, ed. Geneva, Switzerland: International Organization for Standardization; 2009.

  41. P.S.X. Yap, K. Yusoff, S.H.E. Lim, C.M. Chong, K.S. Lai, Membrane disruption properties of essential oils—a double-edged sword? Processes. 9, 595 (2021). https://doi.org/10.3390/pr9040595

    Article  CAS  Google Scholar 

  42. L. Zhang, P.Y. Tan, C.L. Chow, C.K. Lim, O.K. Tan, M.S. Tse, C.C. Sze, Antibacterial activities of mechanochemically synthesized perovskite strontium titanate ferrite metal oxide. Colloids. Surf. A: Physicochem. Eng. Asp. 456, 169–175 (2014)

    Article  CAS  Google Scholar 

  43. B. Das, D. Mandal, S.K. Dash, S. Chattopadhyay, S. Tripathy, D.P. Dolai, S.K. Dey, S. Roy, Eugenol provokes ROS-mediated membrane damage-associated antibacterial activity against clinically isolated multidrug-resistant Staphylococcus aureus strains. Infect. Dis. Res. Treat. 9, S31741 (2016). https://doi.org/10.4137/IDRT.S31741

    Article  Google Scholar 

  44. F. Nazzaro, F. Fratianni, L. De Martino, R. Coppola, V. De Feo, Effect of essential oils on pathogenic bacteria. Pharmaceuticals. 6, 1451–1474 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  45. R.A. Ismail, G.M. Sulaiman, S.A. Abdulrahman, T.R. Marzoog, Antibacterial activity of magnetic iron oxide nanoparticles synthesized by laser ablation in liquid. Mater. Sci. Eng. C. 53, 286–297 (2015)

    Article  CAS  Google Scholar 

  46. S. Ma, S. Zhan, Y. Jia, Q. Zhou, Superior antibacterial activity of Fe3O4-TiO2 nanosheets under solar light. ACS Appl. Mat. Interfaces. 7, 21875–21883 (2015)

    Article  CAS  Google Scholar 

  47. A. Marchese, R. Barbieri, E. Coppo, I.E. Orhan, M. Daglia, S.F. Nabavi, M. Izadi, M. Abdollahi, M.S. Nabavi, M. Ajami, Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 43, 668–689 (2017)

    Article  CAS  PubMed  Google Scholar 

  48. I. Negut, V. Grumezescu, A. Ficai, A.M. Grumezescu, A.M. Holban, R.C. Popescu, D. Savu, G. Socol, MAPLE deposition of Nigella sativa functionalized Fe3O4 nanoparticles for antimicrobial coatings. Appl. Surf. Sci. 455, 513–521 (2018)

    Article  CAS  Google Scholar 

  49. H.B. Mohammed, S.M.I. Rayyif, C. Curutiu, A.C. Birca, O.C. Oprea, A.M. Grumezescu, L.M. Ditu, I. Gheorghe, M.C. Chifiriuc, G. Mihaescu, A.M. Holban, Eugenol-functionalized magnetite nanoparticles modulate virulence and persistence in pseudomonas aeruginosa clinical strains. Molecules 26, 2189 (2021). https://doi.org/10.3390/molecules26082189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. M.K. Yadav, S.W. Chae, G.J. Im, J.W. Chung, J.J. Song, Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS ONE 10, e0119564 (2015). https://doi.org/10.1371/journal.pone.0119564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. N.A. Al-Shabib, F.M. Husain, I. Ahmad, M.H. Baig, Eugenol inhibits quorum sensing and biofilm of toxigenic MRSA strains isolated from food handlers employed in Saudi Arabia. Biotechnol. Biotechnol. Equip. 31, 387–396 (2017)

    Article  CAS  Google Scholar 

  52. Z. Lou, K.S. Letsididi, F. Yu, Z. Pei, H. Wang, V. Letsididi, Inhibitive effect of eugenol and its nanoemulsion on quorum sensing–mediated virulence factors and biofilm formation by Pseudomonas aeruginosa. J. Food Prot. 82, 379–389 (2019)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001, FAPERGS, CNPq, W.J.S. Garcia, A. Harres, and L.S. Dorneles from Laboratório de Magnetismo e Materiais Magnéticos—LMMM UFSM, and Universidade Franciscana for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Rodrigo Bohn Rhoden.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 5339 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva Bruckmann, F., Viana, A.R., Lopes, L.Q.S. et al. Synthesis, Characterization, and Biological Activity Evaluation of Magnetite-Functionalized Eugenol. J Inorg Organomet Polym 32, 1459–1472 (2022). https://doi.org/10.1007/s10904-021-02207-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-02207-7

Keywords

Navigation