Skip to main content
Log in

Effect of Killer Impurities on Optical Properties of ZnO at Low Temperature

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Optical characterizations for ZnO doped with killer impurities (Co or Fe or Ni) having doping concentrations 0.05–1.00% by weight have been carried out at 77 K. Optical properties such as excited state lifetime, trap-depth and decay constant values have been measured using the pulse excitation method. The effect of killer dopants, concentration of killer ions as well as the effect of temperature on various optical parameters values has been observed. Multi-exponential decay curves have been observed. Lifetime values are found to be in the micro- and nano-second time domain and a reverse trend is obtained with increase in concentration of killer impurities. With decreases in temperature from 300 to 77 K, lifetime shortening takes place. The effect of killer impurities is more prominent at higher concentrations. A mixed trend in decay constant values is observed with the increase proportional to the concentration of killer impurities. The values of the decay constant show a mixed effect with change in impurity concentrations. The value of the decay constant 0.76, corresponding to ZnO: Ni (0.7%) is the highest among all the doped ZnO phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wegh R.T., Donker H., Van Loef E.V.D., Oskam K.D., Meijerink A. (2000). J. Lumin. 87: 1017

    Article  Google Scholar 

  2. Salley G.M., Wenger O.S., Kramer K.W., Gudel H.U. (2002). Curr. Opin. Solid State Mater. Sci. 6: 487

    Article  Google Scholar 

  3. Ronda C.R. (1997). J. Lumin. 72: 49

    Article  Google Scholar 

  4. Bagnall D.M., Chen Y.F., Zhu Z., Yao T., Koyama S., Sen M.Y., Goto T. (1997). Appl. Phys. Lett. 70: 2230

    Article  ADS  Google Scholar 

  5. Reynolds D.C., Look D.C., Jogai B. (1996). Solid State Commun. 99:873

    Article  Google Scholar 

  6. Ohta H., Kawamura K., Orita M., Hirano M., Sarukura N., Hosono H. (2000). Appl. Phys. Lett. 77: 475

    Article  ADS  Google Scholar 

  7. Ronfard-Haret J.C. (2003). J. Lumin. 104: 103

    Article  Google Scholar 

  8. Ueda K., Tabat H., Kawai T. (2001). Appl. Phys. Lett. 79: 988

    Article  ADS  Google Scholar 

  9. Sato K., Yoshida H.K. (2002). Semicond. Sci. Technol. 17: 376

    Article  Google Scholar 

  10. Boemare C., Monteiro T., Guilherme J.G., Alves E. (2001). Physica B 308: 985

    Article  ADS  Google Scholar 

  11. Moncorge R., Bettinelli M., Guyot Y., Capobianco J.A., Girard S. (1999). J. Phys.: Condens. Matter 11: 6831

    Article  ADS  Google Scholar 

  12. Walker G., Kamaluddin B., Glynn T.J., Sherlock R. (1994). J. Lumin. 60: 123

    Article  Google Scholar 

  13. White W.B., Matsumura M., Linnehan D.G., Furukawa T., Chandrasekhar B.K. (1986). Am. Mineral. 71: 1415

    Google Scholar 

  14. Pressel K., Thonke K., Dornen A., Pensl G. (1991). Phys. Rev. B 43: 2239

    Article  ADS  Google Scholar 

  15. Troccoli M., Scamarico G., Fraboni B., Priolo F., Gasparotto A. (2000). Semicond. Sci. Technol. 16: L1

    Article  Google Scholar 

  16. Bhatti H.S., Sharma R., Verma N.K., Vadera S.R., Manzoor K. (2006). J. Phys. D: Appl. Phys. 39: 1754

    Article  ADS  Google Scholar 

  17. Bhatti H.S., Gupta A., Verma N.K., Kumar S. (2006). J. Mater. Sci.: Mater. Electron. 17: 281

    Article  Google Scholar 

  18. Reynolds D.C., Look D.C., Jogai B., Hoelscher J.E., Sherriff R.E., Harris M.T., Callahan M.J. (2000). J. Appl. Phys. 88: 2152

    Article  ADS  Google Scholar 

  19. Teke A., Ozgur U., Dogan S., Gu X., Morkoç H., Nemeth B., Nause J., Everitt H.O. (2004). Phys. Rev. B 70: 195207

    Article  ADS  Google Scholar 

  20. Koida T., Chichibu S.F., Uedono A., Tsukazaki A., Kawasaki M., Sota T., Segawa Y., Koinuma H. (2003). Appl. Phys. Lett. 82: 532

    Article  ADS  Google Scholar 

  21. Kobayashi A., Sankey O.F., Dow J.D. (1983). Phys. Rev. B 28: 946

    Article  ADS  Google Scholar 

  22. Jung S.W., Park W.I., Cheong H.D., Yi G.C., Jang H.M., Hong S., Joo T. (2002). Appl. Phys. Lett. 80: 1924

    Article  ADS  Google Scholar 

  23. Sapra S., Shanthi N., Sarma D.D. (2002). Phys. Rev. B, 66: 205202

    Article  ADS  Google Scholar 

  24. Chen W., Sammynaiken R., Huamg Y., Malam J.O., Wallenberg R., Bovin J.O., Zwiller V., Kotov N.A. (2001). J. Appl. Phys 89: 1120

    Article  ADS  Google Scholar 

  25. Bhatti H.S., Sharma R., Verma N.K. (2006). Physica B 382:38

    Article  ADS  Google Scholar 

  26. Bhatti H.S., Sharma R., Verma N.K. (2006). J. Mod. Optics 53: 2021

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Gupta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, A., Verma, N.K. & Bhatti, H.S. Effect of Killer Impurities on Optical Properties of ZnO at Low Temperature. J Low Temp Phys 147, 49–57 (2007). https://doi.org/10.1007/s10909-006-9297-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-006-9297-2

Keywords

PACS Numbers

Navigation