Skip to main content

Advertisement

Log in

Cryogenic Processing: A Study of Materials at Low Temperatures

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Cryogenics is an exciting, important and inexpensive technique that already has led to main discoveries and holds much future assurance. Cryogenic processing is the treatment of the materials at very low temperature around 77 K. This technique has been proven to be efficient in improving the physical and mechanical properties of the materials such as metals, alloys, plastics and composites. It improves the wear, abrasion, erosion and corrosion resistivity, durability and stabilizes the strength characteristics of various materials. Cryogenic refines and stabilizes the crystal lattice structure and distribute carbon particles throughout the material resulting a stronger and hence more durable material. In present paper, we have reviewed the effect of cryogenic treatment on some metals, alloys, plastics and composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Foerg, Int. J. Refrig. 25, 283–292 (2002)

    Article  Google Scholar 

  2. G. Scurlock, Cryogenics 30, 483–500 (1990)

    Article  Google Scholar 

  3. W. Steckelmacher, in Monographs on Cryogenics, vol. 8, ed. by R.G. Scurlock (Oxford University Press, Oxford, 1992), p. 653

    Google Scholar 

  4. R.N. Richardson, The cooling potential of cryogens, Part 1: The early development of refrigeration and cryogenic cooling technology. Ecolibrium 2, 10–14 (2003)

    Google Scholar 

  5. K.D. Timmerhaus, The Cryogenic Engineering Conference—A Record of Twenty Five Years of Low Temperature Progress. Advances in Cryogenic Engineering, vol. 27 (Plenum Press, New York, 1982), p. 1

    Google Scholar 

  6. E.R. Busch, President, Materials Improvement, Inc., Detroit, MI. Private communication. December 1986

  7. A. Gulyaev, Metallurg 12, 65–70 (1937)

  8. P. Gordon, M. Cohen, Trans. ASM 30, 569–588 (1942)

    Google Scholar 

  9. S.W. DePoy, Subzero treatment of high speed steel, in The Iron Age (1994), p. 52

  10. R.F. Barron, A study of the effects of cryogenic treatment on tool steel properties, Louisiana Technical University Report (1973)

  11. E.A. Smol’nikov, G.A. Kossovich, Cold treatments of cutting tools. Met. Sci. Heat Treat. 22, 704–705 (1980), English translation of a Russian journal

    Article  Google Scholar 

  12. P.J. Singh, B. Guha, D.R.G. Achar, Eng. Fail. Anal. 10, 1–12 (2003)

    Article  Google Scholar 

  13. R.J. Mauriello, K.B. Sundaram, L.C. Chow, Int. J. Electron. 87, 99–106 (2000)

    Article  Google Scholar 

  14. A.Y.L. Yong, K.H.W. Seah, M. Rahman, Int. J. Adv. Manuf. Technol. 32, 638–643 (2007)

    Article  Google Scholar 

  15. M. Pellizzari, A. Molinari, in Proceedings of the Sixth International Tooling Conference, Karlstad University, 2002, p. 547, ed. by J. Bergstrom, G. Fredriksson, M. Johansson, O. Kotik, F. Thuvander,

  16. B.C. Ray, Adv. Compos. Lett. 14, 57–61 (2005)

    Google Scholar 

  17. B.C. Ray, J. Reinf. Plast. Compos. 24, 713–717 (2005)

    Article  ADS  Google Scholar 

  18. L. He, Z.Q. Shi, J. Vac. Sci. Technol. A 14, 704–708 (1996)

    Article  ADS  Google Scholar 

  19. L. He, J.E. Siewenie, J. Vac. Sci. Technol. A 17, 1799–1804 (1999)

    Article  ADS  Google Scholar 

  20. Z.Q. Shi, W.A. Anderson, J. Vac. Sci. Technol. A 11, 985–989 (1993)

    Article  ADS  Google Scholar 

  21. Y.M. Wang, E. Ma, Acta Mater. 52, 1699–1709 (2004)

    Article  Google Scholar 

  22. A.Y. Ishchenco, N.V. Novikov, Adv. Cryog. Eng. 24, 491–504 (1978)

    Google Scholar 

  23. R.A. Kelsey, F.G. Nelson, Adv. Cryog. Eng. 24, 505–518 (1978)

    Google Scholar 

  24. L.P. Rice, J.E. Campbell, W.F. Simmons, Adv. Cryog. Eng. 7, 478–489 (1962)

    Google Scholar 

  25. K. Kato, Wear 241, 151 (2000)

    Article  Google Scholar 

  26. A.S. Reddy, S.K. Biswas, K.S. Murthy, Wear 71, 115–123 (1994)

    Article  Google Scholar 

  27. A. Molinari, A. Pellizari, Mater. Process. Technol. 118, 350–355 (2001)

    Article  Google Scholar 

  28. P. Paulin, Frozen gears, Gear Technol. 10, 26–29 (1993)

    Google Scholar 

  29. D.N. Collins, J. Dormer, Heat Treat. Met. 3, 71–74 (1997)

    Google Scholar 

  30. R. Chillar, S.C. Agrawal, AIP Conf. Proc. 824, 77–82 (2006)

    Article  ADS  Google Scholar 

  31. F. Meng, K. Tagashira, Scr. Metall. Mater. 31, 865–868 (1994)

    Article  Google Scholar 

  32. E.A. Smoloikov, V.I. Tkachenko, Mach. Tool. 51, 22–24 (1980)

    Google Scholar 

  33. G.R. Speich, in ASM Handbook, vol. 9 (ASM International, Materials Park, 1985), pp. 668–672

    Google Scholar 

  34. W. Reitz, J. Pendray, Mater. Manuf. Process. 16, 829–840 (2001)

    Article  Google Scholar 

  35. R.L. Reid, Scrap (USA) 59, 32–36 (2002)

    Google Scholar 

  36. A.B. Chattopadhyay, A. Bose, A.K. Chattopadhyay, Precis. Eng. 7, 93–98 (1985)

    Article  Google Scholar 

  37. C. Evans, CIRP Ann. 40, 571 (1991)

    Article  Google Scholar 

  38. D. Bhattacharya, M.N. Allen, S.J. Mander, Mater. Manuf. Process. 8, 631 (1993)

    Article  Google Scholar 

  39. S. Paul, P.P. Bandyopadbyay, A.B. Chattopadhyay, J. Mat. Proc. 37, 791 (1993)

    Article  Google Scholar 

  40. S. Paul, A.B. Chattopadhyay, Int. J. MTM 35, 109 (1995)

    Google Scholar 

  41. O. Yano, H. Yamaoka, Prog. Polym. Sci. 20, 585–613 (1995)

    Article  Google Scholar 

  42. J.M. Crissman, A.E. Woodward, J.A. Sauer, J. Polym. Sci. A 2, 5075–5091 (1964)

    Google Scholar 

  43. J.M. Crissman, A.E. Woodward, J.A. Sauer, J. Polym. Sci. A 3, 2693–2697 (1965)

    Google Scholar 

  44. L.E. Nielsen, Mechanical Properties of Polymers and Composities (Dekker, New York, 1975)

    Google Scholar 

  45. C.D. Armeniades, B. Eric, J. Polym. Sci. A 9, 1345–1369 (1971)

    Article  Google Scholar 

  46. C.D. Armeniades, I. Kuriyama, J.M. Roe, E. Baer, J. Macromol. Sci. Phys. B 1, 777–791 (1967)

    Article  Google Scholar 

  47. V. Frosini, A.E. Woodward, J. Macromol. Sci. Phys. B 3, 91–100 (1969)

    Article  Google Scholar 

  48. R. Diekman, J. Thermosetting. Thermoset Div. 29, 5–14 (2001)

    Google Scholar 

  49. R. Singh, S. Gupta, in National Seminar on Nonferrous Metals—Imperative Need for Sustainable Development. Indian Institute of Metals, Khetari Nagar Chapter, Rajasthan, India, pp. 45–48 (2006)

  50. J.A. Smith, Ausz. Eur. Patentanmeld. 5, 509–510 (1989)

    Google Scholar 

  51. V. Leskovsek, M. Kalin, J. Vizintin, Vacuum 80, 507–518 (2006)

    Article  Google Scholar 

  52. S.H. Lee, S.W. Kim, K.H. Kang, Int. J. Thermophys. 27, 282–292 (2006)

    Article  Google Scholar 

  53. N.A. Sorokina, E.A. Ul’yanin, V.S. Tashchilov, I.A. Rastorgueva, B.N. Kuborskii, Met. Sci. Heat Treat. 13, 823–826 (1971)

    Article  Google Scholar 

  54. V.I. Kozlovskaya, Y.M. Potak, Y.F. Orzhekhovskii, Met. Sci. Heat Treat. 11, 400–405 (1969)

    Article  Google Scholar 

  55. T. Yuri, T. Ogata, M. Saito, Y. Hirayama, Cryogenics 40, 251–259 (2000)

    Article  ADS  Google Scholar 

  56. T. Yuri, T. Ogata, M. Saito, Y. Hirayama, Cryogenics 41, 475–483 (2001)

    Article  ADS  Google Scholar 

  57. L. He, Z.Q. Shi, Solid-State Electron. 39, 1811–1815 (1996)

    Article  ADS  Google Scholar 

  58. Z.Q. Shi, R.L. Wallace, W.A. Anderson, Appl. Phys. Lett. 66, 446–448 (1991)

    Article  ADS  Google Scholar 

  59. L. He, J.E. Siewenie, Surf. Coat. Technol. 150, 76–79 (2002)

    Article  Google Scholar 

  60. H. Liu, J. Wang, B. Shen, H. YangH, S. Gao, S. Huang, Mater. Design 28, 1059–1064 (2007)

    Article  Google Scholar 

  61. I. Hiroaki, T. Minoru, S. Kwang-Soup, U. Hitoshi, K. Hiroshi, Diam. Relat. Mater. 12, 1800–1803 (2003)

    Article  Google Scholar 

  62. S. Paul, A.B. Chattopadhyay, Cryogenics 35, 515–523 (1995)

    Article  Google Scholar 

  63. K. Ban, A. Lovas, K. Csach, Czechoslov. J. Phys. 54, 137–140 (2004)

    Article  ADS  Google Scholar 

  64. K. Ban, A. Lovas, J. Kovác, Czechoslov. J. Phys. 54, 141–144 (2004)

    Google Scholar 

  65. J.W. Kim, J.A. Griggs, J.D. Regan, R.A. Ellis, Z. Cai, Int. Endod. J. 38, 364–371 (2005)

    Article  Google Scholar 

  66. A.I. Samoilov, A.I. Krivko, V.S. Kozlova, I.P. Zhegina, Met. Sci. Heat Treat. 18, 157–160 (1976)

    Article  Google Scholar 

  67. J. Srinivas, L. Jed, Polym. Test. 24, 428–434 (2005)

    Article  Google Scholar 

  68. A.P. Smith, H. Ade, C.C. Koch, R.J. Spontak, Polymer 42, 4453–4457 (2000)

    Article  Google Scholar 

  69. U. Sei, J. Therm. Stress. 24, 695–707 (2001)

    Article  Google Scholar 

  70. T. Takeda, Y. Shindo, F. Narita, K. Sanada, Mech. Adv. Mater. Struct. 11, 109–132 (2004)

    Article  Google Scholar 

  71. A. Yamanaka, T. Kashima, Zairyo (Function and Materials, Japan) 20, 40–46 (2004)

    Google Scholar 

  72. S. Michael, K. Uwe, Colloid Polym. Sci. 282, 381–386 (2004)

    Article  Google Scholar 

  73. B. Fritz, W. Guan, A. Morrow, D. Truong, I. Wong, K. Golda, J. Foyos, R. Noorani, in Rapid Prototyping and Manufacturing Conference, Rosemont, IL, USA, 2000, p. 23

  74. J. Gayda, L.J. Ebert, Metall. Trans. A., Phys. Metall. Mater. Sci. 10, 349–353 (1979)

    Article  ADS  Google Scholar 

  75. A. Levy, J.M. Papazian, J. Eng. Mater. Technol. 115, 129–133 (1993)

    Article  Google Scholar 

  76. S.X. Mao, N.A. McMinn, N.Q. Wu, Mater. Sci. Eng. A 363, 275–289 (2003)

    Article  Google Scholar 

  77. J. Hemanth, Wear 258, 1732–1744 (2005)

    Article  Google Scholar 

  78. S. Disdier, J.M. Rey, P. Pailler, A.R. Bunssel, Cryogenics 38, 135–142 (1998)

    Article  Google Scholar 

  79. M. Kasen, R. Santoyo, Cryogenics 35, 731–733 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susheel Kalia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalia, S. Cryogenic Processing: A Study of Materials at Low Temperatures. J Low Temp Phys 158, 934–945 (2010). https://doi.org/10.1007/s10909-009-0058-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-009-0058-x

Navigation