Skip to main content
Log in

Effect of Structural Relaxation on the In-Plane Electrical Resistance of Oxygen-Underdoped ReBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) (Re = Y, Ho) Single Crystals

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The effect of jumpwise temperature variation and room-temperature storing on the basal-plane electrical resistivity \(\rho _{ab}\) of underdoped ReBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) (Re = Y, Ho) single crystals is investigated. Reducing the oxygen content has been revealed to lead to the phase segregation accompanied by both, labile component diffusion and structural relaxation in the sample volume. Room-temperature storing of \({\text {YBa}}_2{\text {Cu}}_3{\text {O}}_{7-\delta }\) single crystals with different oxygen hypostoichiometries leads to a substantial widening of the rectilinear segment in \(\rho _{ab}(T)\) in conjunction with a narrowing of the temperature range of existence of the pseudogap state. It is established that the excess conductivity obeys an exponential law in a broad temperature range, while the pseudogap’s temperature dependence is described satisfactory in the framework of the BCS-BEC crossover theory. Substituting yttrium with holmium essentially effects the charge distribution and the effective interaction in CuO planes, thereby stimulating disordering processes in the oxygen subsystem. This is accompanied by a notable shift of the temperature zones corresponding to transitions of the metal-insulator type and to the regime of manifestation of the pseudogap anomaly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.A. Obolenskii, R.V. Vovk, A.V. Bondarenko, N.N. Chebotaev, Low Temp. Phys. 32, 571 (2006)

    Article  ADS  Google Scholar 

  2. K. Mitsen, O. Ivanenko, J. Exp. Theor. Phys. 100, 1082 (2005)

    Article  ADS  Google Scholar 

  3. I.A. Chaban, Phys. Tverd. Tela 5, 769 (2008)

    Google Scholar 

  4. A.A. Abrikosov, Phys. Rev. B 74, 180505 (2006)

    Article  ADS  Google Scholar 

  5. Y. Kohsaka, K. Iwaya, S. Satow, T. Hanaguri, M. Azuma, M. Takano, H. Takagi, Phys. Rev. Lett. 93, 097004 (2004)

    Article  ADS  Google Scholar 

  6. K. Lang, V. Madhavan, J. Hoffman, E. Hudson, H. Eisaki, S. Uchida, J. Davis, Nature 415, 412 (2002)

    Article  ADS  Google Scholar 

  7. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodnii, A.V. Bondarenko, I.L. Gulatis, N.N. Chebotaev, Low Temp. Phys. 33, 710 (2007)

    Article  ADS  Google Scholar 

  8. M.A. Obolenskii, A.V. Bondarenko, R.V. Vovk, A.A. Prodan, Low Temp. Phys. 23, 882 (1997)

    Article  ADS  Google Scholar 

  9. R.V. Vovk, Z.F. Nazyrov, M.A. Obolenskii, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes, Philos. Mag. 91, 2291 (2011)

    Article  ADS  Google Scholar 

  10. P. Schleger, W. Hardy, B. Yang, Physica C 176, 261 (1991)

    Article  ADS  Google Scholar 

  11. R. Vovk, M. Obolenskii, A. Zavgorodniy, A. Bondarenko, I. Goulatis, A. Chroneos, J. Mater. Sci: Mater. Electron. 18, 811 (2007)

    Google Scholar 

  12. R.V. Vovk, N.R. Vovk, O.V. Shekhovtsov, I.L. Goulatis, A. Chroneos, Supercond. Sci. Technol. 26, 085017 (2013)

    Article  ADS  Google Scholar 

  13. D.M. Ginsberg (ed.), Physical Properties of High-Temperature Superconductors (Mir, Moscow. (World Scientific, Singapore, 1990)

  14. A.V. Bondarenko, V.A. Shklovskij, M.A. Obolenskii, R.V. Vovk, A.A. Prodan, M. Pissas, D. Niarchos, G. Kallias, Phys. Rev. B 58, 2445 (1998)

    Article  ADS  Google Scholar 

  15. R.V. Vovk, M.A. Obolenskii, Z.F. Nazyrov, I.L. Goulatis, A. Chroneos, V.M. Pinto Simoes, J. Mater. Sci. Mater. Electron. 23, 1255 (2012)

    Article  Google Scholar 

  16. J.D. Jorgensen, S. Pei, P. Lightfoor, H. Shi, A.P. Paulikas, B.W. Veal, Physica C 167, 571 (1990)

    Article  ADS  Google Scholar 

  17. R. Vovk, A. Zavgorodniy, M. Obolenskii, I. Goulatis, A. Chroneos, V.M. Pinto Simoes, J. Mater. Sci: Mater. Electron. 22, 20 (2011)

    Google Scholar 

  18. R. Vovk, N. Vovk, A. Samoilov, I. Goulatis, A. Chroneos, Solid State Commun. 170, 6 (2013)

    Article  ADS  Google Scholar 

  19. T. Krekels, H. Zou, G.V. Tendeloo, D. Wagener, M. Buchgeister, S. Hosseini, P. Herzog, Physica C 196, 363 (1992)

    Article  ADS  Google Scholar 

  20. H. Lütgemeier, S. Schmenn, P. Meuffels, O. Storz, R. Schöllhorn, C. Niedermayer, I. Heinmaa, Y. Baikov, Physica C 267, 191 (1996)

    Article  ADS  Google Scholar 

  21. R.V. Vovk, M.A. Obolenskii, A.A. Zavgorodniy, I.L. Goulatis, V.I. Beletskii, A. Chroneos, Physica C 469, 203 (2009)

    Article  ADS  Google Scholar 

  22. V.V. Moshchalkov, I.G. Muttik, N.A. Samarin, Y.D. Tretyakov, A.R. Kaul, I.E. Graboi, Y.G. Metlin, Fiz. Nizk. Temp. 14, 988 (1988)

    Google Scholar 

  23. N.F. Mott, Metal-insulator transitions (Mir, Moscow, 1990)

  24. V.F. Gantmakher, V.N. Zverev, V.M. Teplinskii, O.I. Barkalov, J. Exp. Theor. Phys. 76, 714 (1993)

    ADS  Google Scholar 

  25. M.V. Sadovskii, I.A. Nekrasov, E.Z. Kuchinskii, T. Pruschke, V.I. Anisimov, Phys. Rev. B 72, 155105 (2005)

    Article  ADS  Google Scholar 

  26. V.M.P. Simoes, A. Chroneos, M.A. Obolenskii, I.L. Goulatis, A.A. Zavgorodniy, R.V. Vovk, Mod. Phys. Lett. B 24, 2295 (2010)

    Article  ADS  MATH  Google Scholar 

  27. E. Babaev, H. Kleinert, Phys. Rev. B 59, 12083 (1999)

    Article  ADS  Google Scholar 

  28. Y.A. Izyumov, E.Z. Kurmaev, Phys. Usp. 178, 1307 (2008)

    Article  Google Scholar 

  29. D.H.S. Smith, R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, New J. Phys. 8, 128 (2006)

    Article  ADS  Google Scholar 

  30. I.N. Adamenko, K.E. Nemchenko, V.I. Tsyganok, A.I. Chervanev, Low Temp. Phys. 20, 498 (1994)

    ADS  Google Scholar 

  31. R.V. Vovk, C.D.H. Williams, A.F.G. Wyatt, Phys. Rev. B 69, 144524 (2004)

    Article  ADS  Google Scholar 

  32. A.J. Matthews, K.V. Kavokin, A. Usher, M.E. Portnoi, M. Zhu, J.D. Gething, M. Elliott, W.G. Herrenden-Harker, K. Phillips, D.A. Ritchie, M.Y. Simmons, C.B. Sorensen, O.P. Hansen, O.A. Mironov, M. Myronov, D.R. Leadley, M. Henini, Phys. Rev. B 70, 075317 (2004)

    Article  ADS  Google Scholar 

  33. P.J. Curran, V.V. Khotkevych, S.J. Bending, A.S. Gibbs, S.L. Lee, A.P. Mackenzie, Phys. Rev. B 84, 104507 (2011)

    Article  ADS  Google Scholar 

  34. R. Beyers, B.T. Ahn, G. Gorman, V.Y. Lee, S.S.P. Parkin, M.L. Ramirez, K.P. Roche, J.E. Vazquez, T.M. Gur, R.A. Huggins, Nature 340, 619 (1989)

    Article  ADS  Google Scholar 

  35. D. de Fontaine, G. Ceder, M. Asta, J. Less Common Met. 108, 164–165 (1990)

    Google Scholar 

  36. V.Y. Suchorevskiy, I.V. Zhiharev, S.I. Chochlova, Preprint, DonIFT (1990)

  37. M.R. Presland, J.L. Tallon, R.G. Buckley, R.S. Liu, N.E. Flower, Physica C 176, 95 (1991)

    Article  ADS  Google Scholar 

  38. J.L. Tallon, C. Bernhard, H. Shaked, R.L. Hitterman, J.D. Jorgensen, Phys. Rev. B 51, 12911 (1995)

    Article  ADS  Google Scholar 

  39. B.W. Veal, H. You, A.P. Paulikas, H. Shi, Y. Fang, J.W. Downey, Phys. Rev. B 42, 4770 (1990)

    Article  ADS  Google Scholar 

  40. S. Sadewasser, J.S. Schilling, A.P. Paulikas, B.W. Veal, Phys. Rev. B 61, 741 (2000)

    Article  ADS  Google Scholar 

  41. R.V. Vovk, M.A. Obolenskii, A.V. Bondarenko, I.L. Goulatis, A.V. Samoilov, A. Chroneos, V.M.P. Simoes, J. Alloys Compd. 464, 58 (2008)

    Article  Google Scholar 

  42. V.V. Moshchalkov, L. Trappeniers, J. Vanacken, Physica C 887, 341–348 (2000)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the European Commission within the Seventh Framework Programme (FP7), project No. 247556.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleksandr V. Dobrovolskiy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vovk, R.V., Vovk, N.R. & Dobrovolskiy, O.V. Effect of Structural Relaxation on the In-Plane Electrical Resistance of Oxygen-Underdoped ReBa\(_2\)Cu\(_3\)O\(_{7-\delta }\) (Re = Y, Ho) Single Crystals. J Low Temp Phys 175, 614–630 (2014). https://doi.org/10.1007/s10909-014-1121-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-014-1121-9

Keywords

PACS

Navigation