Skip to main content
Log in

Fe-Based Superconducting Transition Temperature Modeling through Gaussian Process Regression

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Extensive research has been conducted to find new superconducting materials that exhibit high critical temperature T\(_{c}\), in order to fulfill the needs of practical applications with liquid-helium-free refrigeration or even at room temperature. Iron-based superconductors show high T\(_{c}\) and high upper critical field. The research, however, requires significant manpower for materials synthesis and characterization, and costly equipment and facilities. Computational approaches have contributed greatly to investigate the properties of solid-state matter in many fields, which can be integrated to machine learning and big-data analysis. In this work, the Gaussian process regression model is developed to predict Fe-based superconductor critical temperature based on lattice parameters. This modeling approach demonstrates a high degree of accuracy and stability that lead to the statistical relationship between the lattice parameters and T\(_{c}\). The results disclosed by this work can also lead to a better understanding of the origin of superconductivity in these materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The introduction of the methodology largely follows, e.g., [29, 31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51].

References

  1. P.F. Dahl, Kamerlingh Onnes and the discovery of superconductivity: The leyden years, 1911–1914. Hist. Stud. Phys. Sci. 15, 1–37 (1984)

    Google Scholar 

  2. D.A. Cardwell ,D.S. Ginley, Handbook of Superconducting Materials: Characterization, applications and cryogenics. Institute of Physics, (2003)

  3. J. Bardeen, L.N. Cooper, J.R. Schrieffer, Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  4. L.N. Cooper, Bound electron pairs in a degenerate Fermi gas. Phys. Rev. 104, 1189–1190 (1956)

    ADS  MATH  Google Scholar 

  5. H. Maeda, Y. Tanaka, M. Fukutomi, T. Asano, A new high-T\(-{c}\) oxide superconductor without a rare earth element. Japanese J. Appl. Phys. 27, L209 (1988)

    ADS  Google Scholar 

  6. Y. Wang, J. Zheng, Z. Zhu, M. Zhang, W. Yuan, Quench behavior of high-temperature superconductor (RE)Ba\(_{2}\)Cu\(_{3}\)O \(_{x}\) CORC cable. J. Phys. D: Appl. Phys. 52(34), 345303 (2019)

    Google Scholar 

  7. P. Yang, Y. Wang, D. Qiu, T. Chang, H. Ma, J. Zhu, Z. Jin, Z. Hong, Design and fabrication of a 1-MW high-temperature superconductor DC induction heater. IEEE Trans. Appl. Supercond. 28(4), 1–5 (2018)

    Google Scholar 

  8. P. Yang, K. Li, Y. Wang, L. Wang, Q. Wu, A. Huang, Z. Hong, G. Jiang, Z. Jin, Quench protection system of a 1 MW high temperature superconductor DC induction heater. IEEE Trans. Appl. Supercond. 29(5), 1–6 (2019)

    Google Scholar 

  9. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001)

    ADS  Google Scholar 

  10. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, Iron-based layered superconductor La[O\(_{1-x}\)F\(_{x}\)]FeAs (x= 0.05-0.12) with \(T_{c}\) = 26 K. J. Am. Chem. Soc. 130(11), 3296–3297 (2008)

    Google Scholar 

  11. J. Schwartz, T. Effio, X. Liu, Q.V. Le, A.L. Mbaruku, H.J. Schneider-Muntau, T. Shen, H. Song, U.P. Trociewitz, X. Wang, H.W. Weijers, High field superconducting solenoids via high temperature superconductors. IEEE Trans. Appl. Supercond. 18, 70–81 (2008)

    ADS  Google Scholar 

  12. A. Devred, S.A. Gourlay, A. Yamamoto, Future accelerator magnet needs. IEEE Trans. Appl. Supercond. 15, 1192–1199 (2005)

    ADS  Google Scholar 

  13. S.A. Gourlay, G. Ambrosio, N. Andreev, M. Anerella, E. Barzi, R. Bossert, S. Caspi, D.R. Dietderich, P. Ferracin, R. Gupta, A. Ghosh, Magnet R&D for the US LHC accelerator research program (LARP). IEEE Trans. Appl. Supercond. 16, 324–327 (2006)

    ADS  Google Scholar 

  14. L. Rossi, Superconductivity: Its role, its success and its setbacks in the Large Hadron Collider of CERN. Supercond. Sci. Technol. 23, 034001 (2010)

    ADS  Google Scholar 

  15. J. Schwartz, C.C. Koch, Y. Zhang, X. Liu, “Formation of bismuth strontium calcium copper oxide superconductors,” U.S. Patent US9773962B2, September 26 (2017)

  16. Y. Zhang, S. Johnson, G. Naderi, M. Chaubal, A. Hunt, J. Schwartz, High critical current density Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O \(_{x}\)/Ag wire containing oxide precursor synthesized from nano-oxides. Supercond. Sci. Technol. 29(9), 095012 (2016)

    ADS  Google Scholar 

  17. Y. Zhang, C.C. Koch, J. Schwartz, Formation of Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O \(_{x}\)/Ag multifilamentary metallic precursor powder-in-tube wires. Supercond. Sci. Technol. 29(12), 125005 (2016)

    ADS  Google Scholar 

  18. Y. Zhang, C.C. Koch, J. Schwartz, Synthesis of Bi\(_{2}\)Sr\(_{2}\)CaCu\(_{2}\)O\(_{x}\) superconductors via direct oxidation of metallic precursors. Supercond. Sci. Technol. 27(5), 055016 (2014)

    ADS  Google Scholar 

  19. F.C. Hsu, J.Y. Luo, K.W. Yeh, T.K. Chen, T.W. Huang, P.M. Wu, Y.C. Lee, Y.L. Huang, Y.Y. Chu, D.C. Yan, M.K. Wu, Superconductivity in the PbO-type structure \(\alpha\)-FeSe. Proc. Nat. Acad. Sci. 105, 14262–14264 (2008)

    ADS  Google Scholar 

  20. C.H. Lee, K. Kihou, A. Iyo, H. Kito, P.M. Shirage, H. Eisaki, Relationship between crystal structure and superconductivity in iron-based superconductors. Solid State Commun. 152, 644–648 (2012)

    ADS  Google Scholar 

  21. Y. Mizuguchi, Y. Hara, K. Deguchi, S. Tsuda, T. Yamaguchi, K. Takeda, H. Kotegawa, H. Tou, Y. Takano, Anion height dependence of T\(_{c}\) for the Fe-based superconductor. Supercond. Sci. Technol. 23, 054013 (2010)

    ADS  Google Scholar 

  22. J. Zhao, Q. Huang, C. De La Cruz, S. Li, J.W. Lynn, Y. Chen, M.A. Green, G.F. Chen, G. Li, Z. Li, J.L. Luo, Structural and magnetic phase diagram of CeFeAsO\(_{1-x}\)F\(_{x}\) and its relation to high-temperature superconductivity. Nat. Mater. 7, 953 (2008)

    ADS  Google Scholar 

  23. H. Hosono, K. Kuroki, Iron-based superconductors: Current status of materials and pairing mechanism. Phys. C: Supercond. Appl. 514, 399–422 (2015)

    ADS  Google Scholar 

  24. C.Z. Cai, X.J. Zhu, Y.F. Wen, J.F. Pei, G.L. Wang, W.P. Zhuang, Predicting the superconducting transition temperature T\(_{c}\) of BiPbSrCaCuOF superconductors by using support vector regression. J. Supercond. Novel Magn. 23(5), 737–740 (2010)

    Google Scholar 

  25. C.Z. Cai, T.T. Xiao, J.L. Tang, S.J. Huang, Analysis of process parameters in the laser deposition of YBa\(_{2}\)Cu\(_{3}\)O\(_{7}\) superconducting films by using SVR. Phys. C: Supercond. 493, 100–103 (2013)

    ADS  Google Scholar 

  26. K. Hamidieh, A data-driven statistical model for predicting the critical temperature of a superconductor. Comput. Mater. Sci. 154, 346–354 (2018)

    Google Scholar 

  27. T.O. Owolabi, K.O. Akande, S.O. Olatunji, Prediction of superconducting transition temperatures for Fe-based superconductors using support vector machine. Adv. Phys. Theories Appl. 35, 12–26 (2014)

    Google Scholar 

  28. T.O. Owolabi, K.O. Akande, S.O. Olatunji, Estimation of superconducting transition temperature T\(_{C}\) for superconductors of the doped MgB\(_{2}\) system from the crystal lattice parameters using support vector regression. J. Supercond. Novel Magn. 28(1), 75–81 (2015)

    Google Scholar 

  29. Y. Zhang, X. Xu, Yttrium barium copper oxide superconducting transition temperature modeling through Gaussian process regression. Comput. Mater. Sci. 179, 109583 (2020)

    Google Scholar 

  30. Y. Zhang, X. Xu, Predicting As\(_{x}\)Se\(_{1-x}\) glass transition onset temperature. Int. J. Thermophys. 41, 149 (2020)

    ADS  Google Scholar 

  31. Y. Zhang, X. Xu, Predicting doped MgB\(_{2}\) superconductor critical temperature from lattice parameters using Gaussian process regression. Phys. C: Supercond. Appl. 573, 1353633 (2020)

    ADS  Google Scholar 

  32. Y. Zhang, X. Xu, Curie temperature modeling of magnetocaloric lanthanum manganites using Gaussian process regression. J. Magn. Magn. Mater. 512, 166998 (2020)

    Google Scholar 

  33. Y. Zhang, X. Xu, Machine learning the magnetocaloric effect in manganites from lattice parameters. Appl. Phys. A 126, 341 (2020)

    ADS  Google Scholar 

  34. Y. Zhang, X. Xu, Machine learning the magnetocaloric effect in manganites from compositions and structural parameters. AIP Adv. 10(3), 035220 (2020)

    ADS  Google Scholar 

  35. Y. Zhang, X. Xu, Predicting the thermal conductivity enhancement of nanofluids using computational intelligence. Phys. Lett. A 384, 126500 (2020)

    Google Scholar 

  36. Y. Zhang, X. Xu, Machine learning modeling of lattice constants for half-Heusler alloys. AIP Adv. 10, 045121 (2020)

    ADS  Google Scholar 

  37. Y. Zhang, X. Xu, Machine learning optical band gaps of doped-ZnO films. Optik 217, 164808 (2020)

    ADS  Google Scholar 

  38. Y. Zhang, X. Xu, Relative cooling power modeling of lanthanum manganites using Gaussian process regression. RSC Adv. 10, 20646–20653 (2020)

    ADS  Google Scholar 

  39. Y. Zhang, X. Xu, Machine learning band gaps of doped-TiO\(_{2}\) photocatalysts from structural and morphological parameters. ACS Omega 5, 15344–15352 (2020)

    Google Scholar 

  40. Y. Zhang, X. Xu, Machine learning lattice constants for cubic perovskite \(A_{2}^{2+}BB^{\prime }O_{6}\) compounds. CrystEngComm 22, 6385–6397 (2020)

    Google Scholar 

  41. Y. Zhang, X. Xu, Machine learning lattice constants for cubic perovskite \(ABX_{3}\) compounds. ChemistrySelect 5, 9999–10009 (2020)

    Google Scholar 

  42. Y. Zhang, X. Xu, Lattice misfit predictions via the Gaussian process regression for Ni-based single crystal superalloys. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00883-7

  43. Y. Zhang, X. Xu, Machine learning lattice constants from ionic radii and electronegativities for cubic perovskite \(A_{2}XY_{6}\) compounds. Phys. Chem. Min. 47, 39 (2020)

    ADS  Google Scholar 

  44. Y. Zhang, X. Xu, Transformation temperature predictions through computational intelligence for NiTi-based shape memory alloys. Shap. Mem. Superelasticity (2020). https://doi.org/10.1007/s40830-020-00303-0

  45. Y. Zhang, X. Xu, Machine learning lattice parameters of monoclinic double perovskites. Int. J. Quantum Chem. (2020). https://doi.org/10.1002/QUA.26480

  46. Y. Zhang, X. Xu, Machine learning decomposition onset temperature of Lubricant additives. J. Mater. Eng. Perform. (2020). https://doi.org/10.1007/s11665-020-05146-5

  47. Y. Zhang, X. Xu, Predicting doped Fe-based superconductor critical temperature from structural and topological parameters using machine learning. Int. J. Mater. Res. (2020)

  48. Y. Zhang, X. Xu, Machine learning glass transition temperature of polymers. Heliyon 6, e05055 (2020)

    Google Scholar 

  49. Y. Zhang, X. Xu, Machine learning F-doped Bi(Pb)-Sr-Ca-Cu-O superconducting transition temperature. J. Supercond. Novel Magn. (2020). https://doi.org/10.1007/s10948-020-05682-0

  50. Y. Zhang, X. Xu, Machine learning the central magnetic flux density of superconducting solenoids. Mater. Technol. (2020). https://doi.org/10.1080/10667857.2020.1830567

  51. Y. Zhang, X. Xu, Machine learning lattice constants for spinel compounds. Chem. Phys. Lett. 760, 137993 (2020)

    Google Scholar 

  52. R. Juneja, G. Yumnam, S. Satsangi, A.K. Singh, Coupling the high-throughput property map to machine learning for predicting lattice thermal conductivity. Chem. Mater. 31(14), 5145–5151 (2019)

    Google Scholar 

  53. R. Juneja, A.K. Singh, Guided patchwork kriging to develop highly transferable thermal conductivity prediction models. J. Phys.: Mater. 3(2), 024006 (2020)

    Google Scholar 

  54. D.C. Johnston, The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59(6), 803–1061 (2010)

    ADS  Google Scholar 

  55. A.K. Yadav, A.V. Sanchela, A.D. Thakur, C.V. Tomy, “Effect of nominal substitution of transition metals for excess Fe in Fe\(_{1+ x}\)Se superconductor. Solid State Commun. 202, 8–13 (2015)

    ADS  Google Scholar 

  56. X. Chen, P. Dai, D. Feng, T. Xiang, F.C. Zhang, Iron-based high transition temperature superconductors. Nat. Sci. Rev. 1(3), 371–395 (2014)

    Google Scholar 

  57. X.H. Chen, T. Wu, G. Wu, R.H. Liu, H. Chen, D.F. Fang, Superconductivity at 43 K in SmFeAsO\(_{1-x}\)F\(_{x}\). Nature 453(7196), 761–762 (2008)

    ADS  Google Scholar 

  58. K. Horigane, N. Takeshita, C.H. Lee, H. Hiraka, K. Yamada, First investigation of pressure effects on transition from superconductive to metallic phase in FeSe\(_{0.5}\)Te\(_{0.5}\). J. Phys. Soc. Japan 78(6), 063705–063705 (2009)

    ADS  Google Scholar 

  59. J. Engelmann, V. Grinenko, P. Chekhonin, W. Skrotzki, D.V. Efremov, S. Oswald, K. Iida, R. Hühne, J. Hänisch, M. Hoffmann, F. Kurth, Strain induced superconductivity in the parent compound BaFe\(_{2}\)As\(_{2}\). Nat. Commun. 4(1), 1–6 (2013)

    Google Scholar 

  60. D.R. Parker, M.J. Pitcher, P.J. Baker, I. Franke, T. Lancaster, S.J. Blundell, S.J. Clarke, Structure, antiferromagnetism and superconductivity of the layered iron arsenide NaFeAs. Chem. Commun. 16, 2189–2191 (2009)

    Google Scholar 

  61. P. Dai, J. Hu, E. Dagotto, Magnetism and its microscopic origin in iron-based high-temperature superconductors. Nat. Phys. 8(10), 709–718 (2012)

    Google Scholar 

  62. Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J.G. Bednorz, F. Lichtenberg, Superconductivity in a layered perovskite without copper. Nature 372(6506), 532–534 (1994)

    ADS  Google Scholar 

  63. Z.A. Ren, W. Lu, J. Yang, W. Yi, X.L. Shen, Z.C. Li, G.C. Che, X.L. Dong, L.L. Sun, F. Zhou, Z.X. Zhao, “Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm [O\(_{1-x}\)F\(_{x}\)] FeAs,” arXiv preprint arXiv:0804.2053, (2008)

  64. M.A. McGuire, A.D. Christianson, A.S. Sefat, R. Jin, E.A. Payzant, B.C. Sales, M.D. Lumsden, D. Mandrus, “Evidence for the spin density wave in LaFeAsO,” arXiv-0804 (2008)

  65. Z. Hiroi, N. Kobayashi, M. Takano, Probable hole-doped superconductivity without apical oxygens in (Ca, Na)\(_{2}\)CuO\(_{2}\)CI\(_{2}\). Nature 371(6493), 139–141 (1994)

    ADS  Google Scholar 

  66. I. Yamada, A.A. Belik, M. Azuma, S. Harjo, T. Kamiyama, Y. Shimakawa, M. Takano, Single-layer oxychloride superconductor Ca\(_{2-x}\)CuO\(_{2}\)Cl\(_{2}\) with A-site cation deficiency. Phys. Rev. B 72(22), 224503 (2005)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Xu, X. Fe-Based Superconducting Transition Temperature Modeling through Gaussian Process Regression. J Low Temp Phys 202, 205–218 (2021). https://doi.org/10.1007/s10909-020-02545-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-020-02545-9

Keywords

Navigation