Skip to main content
Log in

Can chemistry be derived from quantum mechanics? Chemical dynamics and structure

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Following an early suggestion by Dirac, contemporary quantum mechanics (QM) and measurement theory are used to stepwise construct a conceptual framework to chemistry. In QM arbitrary physical quantum states are represented by linear superpositions. Base sets and quantum states are clearly distinguished; the latter are sets of ordered complex numbers. The generator of time evolution \(\fancyscript{H}\) is shown to have besides the molecular hamiltonian H=H C+K N, the electron–phonon and spin–orbit operators.H is shown diagonal in a product base set formed with generalized electronic diabatic (GED) and nuclear wave functions; the latter represented in a plane wave base set and unique inertial frame; these functions form the GEDM base set. Chemical species are assigned to particular GED base functions and a chemical quantum state is given as a linear superposition in the GEDM base set. Thus, given a fixed number of electrons and nuclei, the GEDM base set includes all electronuclear quantum states from clusters, supermolecule, molecular aggregates, asymptotic states, and ionized states (continuum electron states) to all plasma states. Experimentally measurable quantum states are given by linear superpositions. A chemical process is sensed by amplitude changes involving different electronic states in the linear superposition; vibration states intervene in excitation–relaxation processes; a time evolution of a global quantum 1-system is the feature. If sufficient time is allowed to an isolated system, with a given total energy E, unitary time evolution with \(\fancyscript{H}\) (but not H) ensures that the system will evolve from the initial state to get amplitudes different from zero for all energy conserving final states. Response towards external dynamic couplings, e.g. electromagnetic fields, is given by changes of amplitudes and expressed in correlation functions. For a quantum state, the amplitude at a given base function reflects the possibility for the system submitted to excitation sources to respond with its spectral signatures; if the experiment is done, and the amplitude is different from zero, then, there will be a response. Algorithms permitting to relate Hilbert space to real space events are discussed. A chemical compound (analyte) is identified to (i) a fixed electronic quantum state; (ii) linear nuclear base states superpositions; (iii) zero amplitude for all other electronic base states. To get this implies either the action of a chemist introducing constraints to bottle the analyte or an accidental change of external (to the box) conditions producing spontaneous separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schatz G.C., and Ratner M.A. (1993). Quantum Mechanics in Chemistry. Prentice Hall, Englewood Cliffs

    Google Scholar 

  2. Dirac P.A.M. (1929). Proc. Roy. Soc. (London) 123:714

    CAS  Google Scholar 

  3. Meyer H. (2002). Ann. Rev. Phys. Chem 53:141

    Article  CAS  Google Scholar 

  4. Roos B.O. (1992). Lecture Notes in Quantum Chemistry. Springer-Verlag, Berlin

    Google Scholar 

  5. Dirac P.A.M. (1947). The Principles of Quantum Mechanics. Clarendon Press, Oxford

    Google Scholar 

  6. von Neumann J. (1955). Mathematical Foundations of Quantum Mechanics. Princeton University Press, Princeton

    Google Scholar 

  7. Sakurai J.J. (1994). Modern Quantum Mechanics. Benjamin/Cummings, Menlo Park

    Google Scholar 

  8. Primas H. (1981). Chemistry, Quantum Mechanics and Reductionism. Springer-Verlag, Berlin

    Google Scholar 

  9. Fidder H., and Tapia O. (2004). Int. J. quantum chem. 97:670

    Article  CAS  Google Scholar 

  10. Greiner W. (1987). Relativistic Quantum Mechanics. Wave Equations. Springer-Verlag, Berlin

    Google Scholar 

  11. Greiner W., and Müller B. (1994). Quantum Mechanics. Symmetries. Springer, Heidelberg

    Google Scholar 

  12. Wigner E. (1939). Ann. Math 40:149

    Article  Google Scholar 

  13. Wigner E. (1959). Group Theory. Academic Press, New York

    Google Scholar 

  14. Ballentine L.E. (1998). Quantum Mechanics: A Modern Development. World Scientific, Singapore

    Google Scholar 

  15. Weinberg S. (1995). The Quantum Theory of Fields. Cambridge Univerty Press, New York

    Google Scholar 

  16. Cohen S., Judd D.L., and Rindell J.J.R. (1960). Phys. Rev 119:384

    Article  CAS  Google Scholar 

  17. Pauncz R. (1979). Spin Eigenfunctions. Plenum Press, New York

    Google Scholar 

  18. Kato T. (1951). Trans. Am. Math. Soc 70:195

    Article  Google Scholar 

  19. Zeh H.D. (1970). Found Phys 1:69

    Article  Google Scholar 

  20. Zewail A.H. (1994). Femtochemistry. Ultrafast Dynamics of the Chemical Bond. World Scientific, Singapore

    Google Scholar 

  21. Isham C.J. (1995). Quantum Theory. Imperial College Press, London

    Google Scholar 

  22. Mukamel S. (1995). Nonlinear Optical Spectroscopy. Oxford University Press, New York

    Google Scholar 

  23. Cohen-Tannoudji C., Dupont-Roc J. and Grynberg G. (1989). Photons and Atoms Introduction to Quantum Electrodynamics Wiley & Son Inc., New York

    Google Scholar 

  24. Tapia O., and Braña P. (2002). J. Mol. Str. (Theochem) 580:9

    Article  CAS  Google Scholar 

  25. Tapia O., Fidder H., Safont V.S., Oliva M. and Andres J. (2002). Int. J. Quantum Chem 88:154

    Article  CAS  Google Scholar 

  26. Elbaz E. (1998). Quantum. The Quantum Theory of Particles, Fields, and Cosmology. Springer-Verlag, Berlin

    Google Scholar 

  27. Biedenharn L.C., and Van Dam H. (1965). Quantum Theory of Angular Momentum. Academic Press, New York

    Google Scholar 

  28. Condon E.U., and Shortley G.H. (1977). The Theory of Atomic Spectra. Cambridge University Press, London

    Google Scholar 

  29. Wolf S.A., Awschalom D.D., Buhrman R.A., Daughton J.M., von Molnár S., Roukes M.L., Chtchelkanova A.Y., and Treger D.M. (2001). Science 294:1488

    Article  CAS  Google Scholar 

  30. Preskill J. (1999). Nature 402:357

    Article  CAS  Google Scholar 

  31. Feynman R.P. (1961). Quantum Electrodynamics. Benjamin Inc., New York

    Google Scholar 

  32. Arteca G.A., and Tapia O. (2004). J. Math. Chem 35:1

    Article  CAS  Google Scholar 

  33. Arteca G.A., and Tapia O. (2004). J. Math. Chem 35:159

    Article  CAS  Google Scholar 

  34. Born M. and Oppenheimer J. (1927). Ann Physik. 84:457

    CAS  Google Scholar 

  35. Born M. and Huang K. (1954). Dynamical Theory of Crystal Lattices. Clarendon, Oxford

    Google Scholar 

  36. Herzberg G. and Teller E. (1933). Z Physik Chem B21:410

    Google Scholar 

  37. Longuet-Higgins H.C. (1961). Adv. Spectry 2:429

    Google Scholar 

  38. Martín F. (1999). J. Phys. B 32:R197

    Article  Google Scholar 

  39. Tapia O. and Arteca G.A. (2003). Internet Electron. J. Mol. Des 2:454

    CAS  Google Scholar 

  40. Tapia O. (2004). Int. J. Quantum Chem. 97:637

    Article  CAS  Google Scholar 

  41. Tapia O. and Arteca G.A. (2004). Adv Quantum Chem. 47:273

    Google Scholar 

  42. Kiselev A.A. (1970). J. Phys. B: Atom Molec. Phys 3:904

    Article  Google Scholar 

  43. Jasper A.W., Zhu C., Nangia S. and Truhlar D.G. (2004). Faraday Discuss. 127:1

    Article  CAS  Google Scholar 

  44. Byron F.W. Jr. and Fuller R.W. (1970). Mathematics of Classical and Quantum Physics. Dover Publications Inc., New York

    Google Scholar 

  45. Child M.S. (eds). (2004). Faraday Discussions 127:473

  46. Goscinski O. and Mujica V. in: Density Matrices and Density Functionals, eds. R. Erdahl and Smith V.H., Jr, (Reidel, Dordrecht 1987) p. 597

  47. Woolley R.G., and Sutcliffe B.T. (1977). Chem Phys Lett 45:393

    Article  CAS  Google Scholar 

  48. Moffitt W. and Liehr A.D. (1957). Phys Rev 106:1195

    Article  Google Scholar 

  49. Abragam A. and Bleaney B. (1986). Electron Paramagnetic Resonance of Transition Ions. Dover Publications Inc., New York

    Google Scholar 

  50. Ham F.S., and Slack G.A. (1971). Phys. Rev. B 4:777

    Article  Google Scholar 

  51. Pople J.A., and Longuet-Higgins H.C. (1958). Mol Phys 1:372

    Article  CAS  Google Scholar 

  52. Pople J.A. (1959). Mol. Phys 2:16

    Google Scholar 

  53. Yarkony D.R. (1998). Acc. Chem. Res 31:511

    Article  CAS  Google Scholar 

  54. Loudon R. (1986). The Quantum Theory of Light. Clarendon Press, Oxford

    Google Scholar 

  55. Friedrich D.M., and McClain W.M. (1980). Ann Rev Phys Chem 31:559

    Article  CAS  Google Scholar 

  56. Shapiro M. and Brumer P. (2000). Adv. Atom Mol. Opt. Phys 42:287

    Article  CAS  Google Scholar 

  57. Courtade E., Anderlini M., Ciampini D., J.H. Müller, Morsch O., Arimondo E., Aymar M. and Robinson E.J. (2004). J. Phys. B: At. Mol. Opt. Phys. 37:967

    Article  CAS  Google Scholar 

  58. Zewail A.H. (1988). Science 242:1645

    CAS  Google Scholar 

  59. Kreyszig E. (1978). Introductory Functional Analysis with Applications. John Wiley & Sons, New York

    Google Scholar 

  60. Thirring W.E. in: Schrödinger, Kilmister C.W., ed. (Cambridge University Press, Cambridge, 1987) p. 65.

  61. Tapia O. (2004). Int. J. Quantum Chem. 99:373

    Article  CAS  Google Scholar 

  62. Pauling L. (1935). Introduction to Quantum Mechanics. McGraw-Hill, New York

    Google Scholar 

  63. Kroto H.W. (1992). Molecular Rotation Spectra. Dover Publications Inc., New York

    Google Scholar 

  64. Aparicio F., Ireta J., Rojo A., Escobar L., Cedillo A., Galván M. (2003). J. Phys. Chem. B 107:1692

    Article  CAS  Google Scholar 

  65. Tapia O., in: Quantum Systems in Chemistry and Physics, Vol II: Advanced Problems and Complex Systems, eds. A. Hernandez-Laguna, Maruani J., R. McWeeny and S. Wilson (Kluwer, Dordrecht, 2000) p. 193.

  66. Tapia O., in: New Trends in Quantum Systems in Chemistry and Physics, eds. Maruani J., S. Wilson and Y. G. Smeyers (Kluwer, Dordrecht, 2000) p. 23

  67. Tapia O. (2001). Adv. Quantum Chem. 40:103

    CAS  Google Scholar 

  68. Mead C.A., and Truhlar D.G. (1982). J. Chem. Phys 77:6090

    Article  CAS  Google Scholar 

  69. Nakamura H. and Truhlar D.G. (2001). J. Chem. Phys 115:10353

    Article  CAS  Google Scholar 

  70. Langhoff P.W., Hinde R.H., Boatz J.A., and Sheehy J.A. (2002). Chem Phys Lett 358:231

    Article  CAS  Google Scholar 

  71. Bayfield J.E. (1999). Quantum Evolution. John Wiley & Sons, New York

    Google Scholar 

  72. Bartels L., Wang F. Möller D., Knoesel E. and Heinz T. (2004). Science 305:648

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tapia, O. Can chemistry be derived from quantum mechanics? Chemical dynamics and structure. J Math Chem 39, 637–669 (2006). https://doi.org/10.1007/s10910-005-9012-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-005-9012-6

Keywords

Navigation