Skip to main content
Log in

On general sum-connectivity index

  • ORIGINAL PAPER
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We report some properties especially lower and upper bounds in terms of other graph invariants for the general sum-connectivity index which generalizes both the ordinary sum-connectivity index and the first Zagreb index. Additionally, we give the Nordhaus-Gaddum-type result for the general sum-connectivity index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Randić M.: On characterization of molecular branching. J. Am. Chem. Soc. 97, 6609–6615 (1975)

    Article  Google Scholar 

  2. Kier L.B., Hall L.H.: Molecular Connectivity in Chemistry and Drug Research. Academic Press, New York (1976)

    Google Scholar 

  3. Kier L.B., Hall L.H.: Molecular Connectivity in Structure-Activity Analysis. Research Studies Press/Wiley, Letchworth/New York (1986)

    Google Scholar 

  4. Todeschini R., Consonni V.: Handbook of Molecular Descriptors. Wiley-VCH, Weinheim (2000)

    Book  Google Scholar 

  5. Pogliani L.: From molecular connectivity indices to semiempirical connectivity terms: Recent trends in graph theoretical descriptors. Chem. Rev. 100, 3827–3858 (2000)

    Article  CAS  Google Scholar 

  6. García-Domenech R., Gálvez J., de Julián-Ortiz J.V., Pogliani L.: Some new trends in chemical graph theory. Chem. Rev. 108, 1127–1169 (2008)

    Article  CAS  Google Scholar 

  7. Stankevich V., Skvortsova M.I., Zefirov N.S.: On a quantum chemical interpretation of molecular connectivity indices for conjugated hydrocarbons. J. Mol. Struct. (THEOCHEM) 342, 173–179 (1995)

    Article  CAS  Google Scholar 

  8. Galvez J.: On a topological interpretation of electronic and vibrational molecular energies. J. Mol. Struct. (THEOCHEM) 429, 255–264 (1998)

    Article  CAS  Google Scholar 

  9. Estrada E.: Physicochemical interpretation of molecular connectivity indices. J. Phys. Chem. A 106, 9085–9091 (2002)

    Article  CAS  Google Scholar 

  10. Klein D.J., Palacios J.L., Randić M., Trinajstić N.: Random walks and chemical graph theory. J. Chem. Inf. Comput. Sci. 44, 1521–1525 (2004)

    CAS  Google Scholar 

  11. Randić M.: On history of the Randić index and emerging hostility toward chemical graph theory. MATCH Commun. Math. Comput. Chem. 59, 5–124 (2008)

    Google Scholar 

  12. Randić M.: The connectivity index 25 years later. J. Mol. Graph. Model. 20, 19–35 (2001)

    Article  Google Scholar 

  13. Li X., Gutman I.: Mathematical Aspects of Randić-Type Molecular Structure Descriptors. University of Kragujevac, Kragujevac (2006)

    Google Scholar 

  14. Gutman, I., Furtula, B. (eds): Recent Results in the Theory of Randić Index. University of Kragujevac, Kragujevac (2008)

    Google Scholar 

  15. B. Zhou, N. Trinajstić, On a novel connectivity index. J. Math. Chem. in press

  16. Ivanciuc O., Ivanciuc T., Cabrol-Bass D., Balaban A.T.: Evaluation in quantitative structure-property relationship models of structural descriptors derived from information-theory operators. J. Chem. Inf. Comput. Sci. 40, 631–643 (2000)

    CAS  Google Scholar 

  17. Z. Du, B. Zhou, N. Trinajstić, Sum-connectivity indices of trees and unicyclic graphs of fixed maximum degree. Submitted

  18. Bollobás B., Erdös P.: Graphs of extremal weights. Ars Comb. 50, 225–233 (1998)

    Google Scholar 

  19. Zhou B., Luo W.: A note on general Randić index. MATCH Commun. Math. Comput. Chem. 62, 155–162 (2009)

    CAS  Google Scholar 

  20. Zhou B., Vukičević D.: On general Randić and general zeroth-order Randić indices. MATCH Commun. Math. Comput. Chem. 62, 189–196 (2009)

    CAS  Google Scholar 

  21. Gutman I., Trinajstić N.: Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972)

    Article  CAS  Google Scholar 

  22. Gutman I., Ruščić B., Trinajstić N., Wilcox C.F. Jr.: Graph theory and molecular orbitals. XII. Acyclic polyenes. J. Phys. Chem. 62, 3399–3405 (1975)

    Article  CAS  Google Scholar 

  23. Nikolić S., Kovačević G., Miličević A., Trinajstić N.: The Zagreb indices 30 years after. Croat. Chem. Acta 76, 113–124 (2003)

    Google Scholar 

  24. Gutman I., Das K.C.: The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83–92 (2004)

    CAS  Google Scholar 

  25. S.C. Basak, G.D. Grunwald, G.J. Niemi, Use of graph-theoretic geometric molecular descriptors in structure-activity relationships. in From Chemical Topology to Three-Dimensional Geometry, ed. by A.T. Balaban (Plenum Press, New York, 1997), pp. 73–116

  26. S.C. Basak, B.D. Gute, G.D. Grunwald, A hierarchical approach to the development of QSAR models using topological, geometrical and quantum chemical parameters. in Topological Indices and Related Descriptors in QSAR and QSPR, ed. by J. Devillers, A.T. Balaban (Gordon & Breach, Amsterdam, 1999), pp. 675–696

  27. de Caen D.: An upper bound on the sum of squares of degrees in a graph. Discrete. Math. 185, 245–248 (1998)

    Article  Google Scholar 

  28. Li J., Pan Y.: de Caen’s inequality and bounds on the largest Laplacian eigenvalue of a graph. Lin. Algebra Appl. 328, 153–160 (2001)

    Article  Google Scholar 

  29. Das K.C.: Sharp bounds for the sum of the squares of the degrees of a graph. Kragujevac J. Math. 25, 31–49 (2003)

    Google Scholar 

  30. Gutman I.: Graphs with smallest sum of squares of vertex degrees. Kragujevac J. Math. 25, 51–54 (2003)

    Google Scholar 

  31. Das K.C., Gutman I.: Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 52, 103–112 (2004)

    CAS  Google Scholar 

  32. Zhou B.: Zagreb indices. MATCH Commun. Math. Comput. Chem. 50, 113–118 (2004)

    Google Scholar 

  33. Vukičević D., Trinajstić N.: On the discriminatory power of the Zagreb indices for molecular graphs. MATCH Commun. Math. Comput. Chem. 53, 111–138 (2005)

    Google Scholar 

  34. Zhou B.: Gutman I., Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem. 54, 233–239 (2005)

    CAS  Google Scholar 

  35. Zhou B., Stevanović D.: A note on Zagreb indices. MATCH Commun. Math. Comput. Chem. 56, 571–578 (2006)

    CAS  Google Scholar 

  36. Zhou B.: Upper bounds for the Zagreb indices and the spectral radius of series-parallel graphs. Int. J. Quantum Chem. 107, 875–878 (2007)

    Article  CAS  Google Scholar 

  37. Zhou B.: Remarks on Zagreb indices. MATCH Commun. Math. Comput. Chem. 57, 591–596 (2007)

    CAS  Google Scholar 

  38. Nordhaus E.A., Gaddum J.W.: On complementary graphs. Amer. Math. Mon. 63, 175–177 (1956)

    Article  Google Scholar 

  39. Bonchev D., Trinajstić N.: Information theory, distance matrix, and molecular branching. J. Chem. Phys. 67, 4517–4533 (1977)

    Article  CAS  Google Scholar 

  40. Gutman I., Lepović M.: Choosing the exponent in the definition of the connectivity index. J. Serb. Chem. Soc. 66, 605–611 (2001)

    CAS  Google Scholar 

  41. Clark L.H., Moon J.W.: On general Randić index for certain families of trees. Ars Combin. 54, 223–235 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, B., Trinajstić, N. On general sum-connectivity index. J Math Chem 47, 210–218 (2010). https://doi.org/10.1007/s10910-009-9542-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-009-9542-4

Keywords

Navigation