Skip to main content
Log in

A perturbation solution of Michaelis–Menten kinetics in a “total” framework

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper we expand the equations governing Michaelis–Menten kinetics in a total quasi-steady state setting, finding the first order uniform expansions. Our results improve previous approximations and work well especially in presence of an enzyme excess.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bodenstein M.Z.: Eine theorie der photochemischen reaktionsgeschwindigkeiten. Z. Phys. Chem. 85, 329–397 (1913)

    Google Scholar 

  2. Chapman D.L., Underhill L.K.: The interaction of chlorine and hydrogen. The influence of mass. J. Chem. Soc. Trans. 103, 496–508 (1913)

    Article  CAS  Google Scholar 

  3. Michaelis L., Menten M.L.: Die kinetik der invertinwirkung. Biochem. Z. 49, 333–339 (1913)

    CAS  Google Scholar 

  4. Briggs G., Haldane J.: A note on the kinetics of enzyme action. Biochem. J. 19, 338–339 (1925)

    CAS  Google Scholar 

  5. Heineken F.G., Tsushiya H.M., Aris R.: On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Math. Biosci. 1, 95–113 (1967)

    Article  Google Scholar 

  6. Segel L.A., Slemrod M.: The quasi steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477 (1989)

    Article  Google Scholar 

  7. Laidler K.J.: Theory of the transient phase in kinetics, with special reference to enzyme systems. Can. J. Chem. 33, 1614–1624 (1955)

    Article  CAS  Google Scholar 

  8. Swoboda P.A.T.: The kinetics of enzyme action. Biochim. Biophys. Acta 23, 70–80 (1957)

    Article  CAS  Google Scholar 

  9. Swoboda P.A.T.: The kinetics of enzyme action, ii. the terminal phase of the reaction. Biochim. Biophys. Acta 25, 132–135 (1957)

    Article  CAS  Google Scholar 

  10. Schauer M., Heinrich R.: Analysis of the quasi-steady-state approximation for an enzymatic one-substrate reaction. J. Theor. Biol. 79, 425–442 (1979)

    Article  CAS  Google Scholar 

  11. Borghans J., de Boer R., Segel L.: Extending the quasi-steady state approximation by changing variables. Bull. Math. Biol. 58, 43–63 (1996)

    Article  CAS  Google Scholar 

  12. Tzafriri A.: Michaelis–Menten kinetics at high enzyme concentrations. Bull. Math. Biol. 65, 1111–1129 (2003)

    Article  CAS  Google Scholar 

  13. Pedersen M.G., Bersani A.M., Bersani E.: The total quasi steady-state approximation for fully competitive enzyme reactions. Bull. Math. Biol. 69, 433–457 (2005)

    Article  Google Scholar 

  14. Pedersen M.G., Bersani A.M., Bersani E.: Steady-state approximations in intracellular signal transduction—a word of caution. J. Math. Chem. 43, 1318–1344 (2008)

    Article  CAS  Google Scholar 

  15. Pedersen M.G., Bersani A.M., Bersani E., Cortese G.: The total quasi-steady state approximation for complex enzyme reactions. MATCOM 79, 1010–1019 (2008)

    Google Scholar 

  16. Pedersen M.G., Bersani A.M.: The total quasi-steady state approximation simplifies theoretical analysis at non-negligible enzyme concentrations: pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J. Math. Biol. 60, 267–283 (2010)

    Article  Google Scholar 

  17. Tzafriri A.R., Edelman E.R.: The total quasi-steady-state approximation is valid for reversible enzyme kinetics. J. Theor. Biol. 226, 303–313 (2004)

    Article  CAS  Google Scholar 

  18. Ciliberto A., Capuani F., Tyson J.J.: Modeling networks of coupled anzymatic reactions using the total quasi-steady state approximation. PLoS Comput. Biol. 3, 463–472 (2007)

    Article  CAS  Google Scholar 

  19. MacNamara S., Bersani A.M., Burrage K., Sidje R.B.: Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation. J. Chem. Phys. 129, 1–13 (2008)

    Article  Google Scholar 

  20. Schnell S., Maini P.K.: Enzyme kinetics far from the standard quasi-steady-state and equilibrium approximations. Math. Comput. Model. 35, 137–144 (2002)

    Article  Google Scholar 

  21. Wei J., Kuo J.C.W.: A lumping analysis in monomolecular reaction systems: analysis of the exactly lumped system. Ind. Eng. Chem. Fundam. 8, 114–123 (1969)

    Article  CAS  Google Scholar 

  22. Van Slyke D.D., Cullen G.E.: The mode of action of urease and of enzymes in general. J. Biol. Chem. 19, 141–180 (1914)

    CAS  Google Scholar 

  23. Dingee J.W., Anton A.B.: A new perturbation solution to the Michaelis-Menten problem. AIChE J. 54, 1344–1357 (2008)

    Article  CAS  Google Scholar 

  24. Bersani A.M., Dell’Acqua G.: Asymptotic expansions in enzyme reactions with high enzyme concentration. Math. Method. Appl. Sci. 34(16), 1954–1960 (2011)

    Article  Google Scholar 

  25. Lin C.C., Segel L.A.: Mathematics applied to deterministic problems in the natural sciences. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1988)

    Book  Google Scholar 

  26. Schnell S., Maini P.K.: Enzyme kinetics at high enzyme concentration. Bull. Math. Biol. 62, 483–499 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Dell’Acqua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dell’Acqua, G., Bersani, A.M. A perturbation solution of Michaelis–Menten kinetics in a “total” framework. J Math Chem 50, 1136–1148 (2012). https://doi.org/10.1007/s10910-011-9957-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-011-9957-6

Keywords

Navigation