Skip to main content
Log in

Applications of Haar basis method for solving some ill-posed inverse problems

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper a numerical method consists of combining Haar basis method and Tikhonov regularization method for solving some ill-posed inverse problems using noisy data is presented. By using a sensor located at a point inside the body and measuring the u(x, t) at a point x = a, 0 < a < 1, and applying Haar basis method to the inverse problem, we determine a stable numerical solution to this problem. Results show that an excellent estimation on the unknown functions of the inverse problem can be obtained within a couple of minutes CPU time at pentium IV-2.4 GHz PC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abtahi M., Pourgholi R., Shidfar A.: Existence and uniqueness of solution for a two dimensional nonlinear inverse diffusion problem. Nonlinear Anal. Theory Methods Appl. 74, 2462–2467 (2011)

    Article  Google Scholar 

  2. Alifanov O.M.: Inverse Heat Transfer Problems. Springer, New York (1994)

    Book  Google Scholar 

  3. Beck J.V., Blackwell B., Clair C.R.St.: Inverse Heat Conduction: Ill Posed Problems. Wiley, New York (1985)

    Google Scholar 

  4. Beck J.V., Blackwell B., Haji-sheikh A.: Comparison of some inverse heat conduction methods using experimental data. Int. J. Heat Mass Transf. 3, 3649–3657 (1996)

    Article  Google Scholar 

  5. Beck J.V., Murio D.C.: Combined function specification-regularization procedure for solution of inverse heat condition problem. AIAA J. 24, 180–185 (1986)

    Article  Google Scholar 

  6. Cabeza J.M.G., Garcia J.A.M., Rodriguez A.C.: A sequential algorithm of inverse heat conduction problems using singular value decomposition. Int. J. Thermal Sci. 44, 235–244 (2005)

    Article  Google Scholar 

  7. Chen C.F., Hsiao C.H.: Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proc. Part D 144(1), 87–94 (1997)

    Google Scholar 

  8. Elden L.: A note on the computation of the generalized cross-validation function for ill-conditioned least squares problems. BIT 24, 467–472 (1984)

    Article  Google Scholar 

  9. Golub G.H., Heath M., Wahba G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21(2), 215–223 (1979)

    Article  Google Scholar 

  10. Hansen P.C.: Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 34, 561–580 (1992)

    Article  Google Scholar 

  11. Haar A.: Zur theorie der orthogonalen Funktionsysteme. Math. Ann. 69, 331–371 (1910)

    Article  Google Scholar 

  12. Hariharan G., Kannan K., Sharma K.R.: Haar wavelet method for solving Fisher’s equation. Appl. Math. Comput. 211, 284–292 (2009)

    Article  Google Scholar 

  13. Hsiao C.H., Wang W.J.: Haar wavelet approach to nonlinear stiff systems. Math. Comput. Simul. 57, 347–353 (2001)

    Article  Google Scholar 

  14. Huang C.-H., Tsai Y.-L.: A transient 3-D inverse problem in imaging the time-dependentlocal heat transfer coefficients for plate fin. Appl. Therm. Eng. 25, 2478–2495 (2005)

    Article  Google Scholar 

  15. Huanga C.-H., Yeha C.-Y., Orlande H.R.B.: A nonlinear inverse problem in simultaneously estimating the heat and mass production rates for a chemically reacting fluid. Chem. Eng. Sci. 58(16), 3741–3752 (2003)

    Article  Google Scholar 

  16. Kalpana R., Raja B.S.: Haar wavelet method for the analysis of transistor circuits. Int. J. Electron. Commun. (AEU) 61, 589–594 (2007)

    Article  Google Scholar 

  17. Lawson C.L., Hanson R.J.: Solving Least Squares Problems. SIAM, Philadelphia (1995)

    Book  Google Scholar 

  18. Martin L., Elliott L., Heggs P.J., Ingham D.B., Lesnic D., Wen X.: Dual reciprocity boundary element method solution of the cauchy problem for Helmholtz-type equations with variable coefficients. J. Sound Vib. 297, 89–105 (2006)

    Article  Google Scholar 

  19. Molhem H., Pourgholi R.: A numerical algorithm for solving a one-dimensional inverse heat conduction problem. J. Math. Stat. 4(1), 60–63 (2008)

    Article  Google Scholar 

  20. Murio D.A.: The Mollification Method and the Numerical Solution of Ill-Posed Problems. Wiley, New York (1993)

    Book  Google Scholar 

  21. Murio D.C., Paloschi J.R.: Combined mollification-future temperature procedure for solution of inverse heat conduction problem. J. Comput. Appl. Math. 23, 235–244 (1988)

    Article  Google Scholar 

  22. Pourgholi R., Azizi N., Gasimov Y.S., Aliev F., Khalafi H.K.: Removal of numerical instability in the solution of an inverse heat conduction problem. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2664–2669 (2009)

    Article  Google Scholar 

  23. Pourgholi R., Rostamian M.: A numerical technique for solving IHCPs using Tikhonov regularization method. Appl. Math. Model. 34(8), 2102–2110 (2010)

    Article  Google Scholar 

  24. Pourgholi R., Rostamian M., Emamjome M.: A numerical method for solving a nonlinear inverse parabolic problem. Inverse Probl. Sci. Eng. 18(8), 1151–1164 (2010)

    Article  Google Scholar 

  25. Sun K.K., Jung B.S, Lee W.L.: An inverse estimation of surface temperature using the maximum entropy method. Int. Commun. Heat Mass Transf. 34, 37–44 (2007)

    Article  Google Scholar 

  26. Tadi M.: Inverse heat conduction based on boundary measurement. Inverse Probl. 13, 1585–1605 (1997)

    Article  Google Scholar 

  27. Tikhonov A.N., Arsenin V.Y.: On the Solution of Ill-Posed Problems. Wiley, New York (1977)

    Google Scholar 

  28. Tikhonov A.N., Arsenin V.Y.: Solution of Ill-Posed Problems. V.H. Winston and Sons, Washington (1977)

    Google Scholar 

  29. Wahba G.: Spline Models for Observational Data, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 59. SIAM, Philadelphia (1990)

    Google Scholar 

  30. Zhou J., Zhang Y., Chen J.K., Feng Z.C.: Inverse heat conduction in a composite slab With pyrolysis effect and temperature-dependent thermophysical properties. J. Heat Transf. 132(3), 034502 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pourgholi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pourgholi, R., Tavallaie, N. & Foadian, S. Applications of Haar basis method for solving some ill-posed inverse problems. J Math Chem 50, 2317–2337 (2012). https://doi.org/10.1007/s10910-012-0036-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-012-0036-4

Keywords

Mathematics Subject Classification (2000)

Navigation