Skip to main content
Log in

A variational principle for a thin film equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Thin film arises in various applications from electrochemistry to nano devices, many mathematical tools were adopted to study the problem, e.g. Lie symmetries and conservation laws, however, the variational approach is rare. This paper shows that the semi-inverse method is an effective approach to establishment of a variational formulation for the thin film equation. A detailed derivation process is given, a special skill for construction of a heuristic trial-functional is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Recio, T.M. Garrido, R. de la Rosa et al., Conservation laws and Lie symmetries a (2 + 1)-dimensional thin film equation. J. Math. Chem. 57(5), 1243–1251 (2019)

    Article  CAS  Google Scholar 

  2. X.-X. Li, D. Tian, C.-H. He, J.-H. He, A fractal modification of the surface coverage model for an electrochemical arsenic sensor. Electrochim. Acta 296, 491–493 (2019)

    Article  CAS  Google Scholar 

  3. J. Fan, Y.R. Zhang, Y. Liu et al., Explanation of the cell orientation in a nanofiber membrane by the geometric potential theory. Results Phys. 15, 102537 (2019)

    Article  Google Scholar 

  4. Z.P. Yang, F. Dou, T. Yu et al., On the cross-section of shaped fibers in the dry spinning process: physical explanation by the geometric potential theory. Results Phys. 14, 102347 (2019)

    Article  Google Scholar 

  5. X.X. Li, J.H. He, Nanoscale adhesion and attachment oscillation under the geometric potential. Part 1: the formation mechanism of nanofiber membrane in the electrospinning. Results Phys. 12, 1405–1410 (2019)

    Article  Google Scholar 

  6. A. Saeed, Z. Shah, S. Islam et al., Three-dimensional casson nanofluid thin film flow over an inclined rotating disk with the impact of heat generation/consumption and thermal radiation. Coatings 9(4), 248 (2019)

    Article  CAS  Google Scholar 

  7. C.-J. Zhou, D. Tian, J.-H. He, What factors affect lotus effect? Therm. Sci. 22, 1737–1743 (2018)

    Article  Google Scholar 

  8. J.H. He, From micro to nano and from science to technology: nano age makes the impossible possible. Micro Nanosyst. 12(1), 1–2 (2010)

    Google Scholar 

  9. J. Manafian, C.T. Sindi, An optimal homotopy asymptotic method applied to the nonlinear thin film flow problems. Int. J. Numer. Methods Heat Fluid Flow 28(12), 2816–2841 (2018)

    Article  Google Scholar 

  10. N. Faraz, Y. Khan, Thin film flow of an unsteady Maxwell fluid over a shrinking/stretching sheet with variable fluid properties. Int. J. Numer. Methods Heat Fluid Flow 28(7), 1596–1612 (2018)

    Article  Google Scholar 

  11. F. Ghani, T. Gul, S. Islam et al., Unsteady magnetohydrodynamics thin film flow of a third grade fluid over an oscillating inclined belt embedded in a porous medium. Therm. Sci. 21(2), 875–887 (2017)

    Article  Google Scholar 

  12. Q.T. Ain, J.H. He, On two-scale dimension and its applications. Therm. Sci. 23(3B), 1707–1712 (2019)

    Article  Google Scholar 

  13. J.H. He, F.Y. Ji, Two-scale mathematics and fractional calculus for thermodynamics. Therm. Sci. 57(8), 1932–1934 (2019)

    CAS  Google Scholar 

  14. J.H. He, F.Y. Ji, Taylor series solution for Lane–Emden equation. J. Math. Chem. (2019). https://doi.org/10.1007/s10910-019-01048-7

    Article  Google Scholar 

  15. J.H. He, The simplest approach to nonlinear oscillators. Results Phys. 15, 102546 (2019)

    Article  Google Scholar 

  16. J.H. He, Variational principles for some nonlinear partial differential equations with variable coefficients. Chaos Solitons Fractals 19(4), 847–851 (2004)

    Article  Google Scholar 

  17. J.H. He, J. Zhang, Semi-inverse method for establishment of variational theory for incremental thermoelasticity with voids, in Variational and Extremum Principles in Macroscopic Systems, ed. by S. Sieniutycz, H. Farkas (Elsevier, Amsterdam, 2005), pp. 75–95

    Chapter  Google Scholar 

  18. J.H. He, A modified Li–He’s variational principle for plasma. Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/HFF-06-2019-0523

    Article  Google Scholar 

  19. J.H. He, Lagrange crisis and generalized variational principle for 3D unsteady flow. Int. J. Numer. Methods Heat Fluid Flow (2019). https://doi.org/10.1108/HFF-07-2019-0577

    Article  Google Scholar 

  20. Y. Wu, J.H. He, A remark on Samuelson’s variational principle in economics. Appl. Math. Lett. 84, 143–147 (2018)

    Article  Google Scholar 

  21. J.H. He, Hamilton’s principle for dynamical elasticity. Appl. Math. Lett. 72, 65–69 (2017)

    Article  Google Scholar 

  22. K. Libarir, A. Zerarka, A semi-inversevariational method for generating the bound state energy eigenvalues in a quantum system: the Dirac Coulomb type-equation. J. Mod. Opt. 65(8), 987–993 (2018)

    Article  Google Scholar 

  23. J. Manafian, P. Bolghar, A. Mohammadalian, Abundant soliton solutions of the resonant nonlinear Schrodinger equation with time-dependent coefficients by ITEM and He’s semi-inverse method. Opt. Quant. Electron. 49(10), 322 (2017)

    Article  Google Scholar 

  24. O.H. El-Kalaawy, New variational principle-exact solutions and conservation laws for modified ion-acoustic shock waves and double layers with electron degenerate in plasma. Phys. Plasmas 24(3), 032308 (2017)

    Article  CAS  Google Scholar 

  25. A. Biswas, Q. Zhou, S.P. Moshokoa et al., Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations. Optik 145, 14–17 (2017)

    Article  Google Scholar 

  26. Y. Li, C.H. He, A short remark on Kalaawy’s variational principle for plasma. Int. J. Numer. Methods Heat Fluid Flow 27(10), 2203–2206 (2017)

    Article  Google Scholar 

  27. Y. Wang, J.Y. An, X.Q. Wang, A variational formulation for anisotropic wave traveling in a porous medium. Fractals 27(4), 1950047 (2019)

    Article  Google Scholar 

  28. J.H. He, A tutorial review on fractal spacetime and fractional calculus. Int. J. Theor. Phys. 53(11), 3698–3718 (2014)

    Article  Google Scholar 

  29. J.H. He, Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018)

    Article  Google Scholar 

  30. N. Anjum, J.H. He, Laplace transform: making the variational iteration method easier. Appl. Math. Lett. 92, 134–138 (2019)

    Article  Google Scholar 

  31. J.H. He, Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20, 1141–1199 (2006)

    Article  Google Scholar 

  32. D. Baleanu, H.K. Jassim, H. Khan, A modified fractional variational iteration method for solving nonlinear gas dynamic and coupled KdV equations involving local fractional operator. Therm. Sci. 22, S165–S175 (2018)

    Article  Google Scholar 

  33. D. Dogan Durgun, A. Konuralp, Fractional variational iteration method for time-fractional nonlinear functional partial differential equation having proportional delays. Therm. Sci. 22, S33–S46 (2018)

    Article  Google Scholar 

  34. M. Inc, H. Khan, D. Baleanu et al., Modified variational iteration method for straight fins with temperature dependent thermal conductivity. Therm. Sci. 22, S229–S236 (2018)

    Article  Google Scholar 

  35. H. Jafari, H.K. Jassim, J. Vahidi, Reduced differential transform and variational iteration methods for 3-D diffusion model in fractal heat transfer within local fractional operators. Therm. Sci. 22, S301–S307 (2018)

    Article  Google Scholar 

  36. Y. Wang, Y.F. Zhang, Z.J. Liu, An explanation of local fractional variational iteration method and its application to local fractional modified Kortewed-de Vries equation. Therm. Sci. 22, 23–27 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Huan He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, JH., Sun, C. A variational principle for a thin film equation. J Math Chem 57, 2075–2081 (2019). https://doi.org/10.1007/s10910-019-01063-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-019-01063-8

Keywords

Navigation