Skip to main content
Log in

Numerical modeling of hydraulic fracture initiation and development

  • Rock Failure
  • Published:
Journal of Mining Science Aims and scope

Abstract

Studying initiation and propagation of hydraulic fractures is carried out based on the hypersingular boundary element method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Zheltov and S. A. Khristianovich, “On the hydraulic fracturing of an oil bed,” Izv. AN SSSR, OTN, No. 5 (1955).

  2. B. C. Haimson and C. Fairhurst, “Initiation and extension of hydraulic fractures in rocks,” Soc. Petrol. Eng. J., 7 (1967).

  3. J. Geertsma and R. Haafkens, “A comparison of the theories predicting width and extent of vertical hydraulically induced fractures,” J. Energy Reservoir Technology, 101 (1979).

  4. K. G. Nolte and M. B. Smith, “Interpretation of fracturing pressures,” J. Petrol. Technol., Sept. (1981).

  5. S. Nemat-Nasser, “Hydraulic fracturing and geothermal energy,” CIP (1983).

  6. N. R. Warpinski, “Measurement of width and pressure in a propagating hydraulic fracture,” Soc. Petrol. Eng. J., Feb. (1985).

  7. M. P. Cleary, D. T. Barr, and R. M. Willis, “Enhancement of real-time hydraulic fracturing models with full 3-D simulator,” in: SPE Gas Technology Symposium, Dallas, TX (1988).

  8. L. L. Lacy, “Comparison of hydraulic fracture orientation techniques,” SPE Production & Facilities, 2 (1987).

  9. R. J. Pine and D. A. C. Nicol, “Analytical and numerical modeling of high pressure fluid-rock mechanical interaction in HDR geothermal energy reservoirs,” in: Comprehensive Rock Engineering: Principles, Practice&Projects, J. Hudson (Ed.), 5 (1993).

  10. F. Guo, J. R. Morgenstern, and J. D. Scott, “Interpretation of hydraulic fracturing breakdown pressure,” Int. J. Rock Mech., 30, No. 6 (1993).

    Google Scholar 

  11. C. Atkinson and M. Thiercelin, “The interaction between the wellbore and pressure-induced fractures,” Int. J. Fracture, 59 (1993).

  12. S. A. Holditch, “Developing data sets for 3D fracture propagation models,” SPE Production & Facilities, 9, No. 4 (1994).

  13. C. Atkinson and M. Thiercelin, “Pressurization of a fractured wellbore,” Int. J. Fracture, 83 (1997).

  14. L. Raymond, et al., “Improving results of coalbed methane development strategies by integrating geomechanics and hydraulic fracturing technologies,” SPE Asia Pacific Oil and Gas Conference and Exhibition, Melbourne, Australia (2002).

  15. R. W. Veatch, Jr., “Overview of current hydraulic fracturing design and treatment technology. Part 2,” Journal of Petroleum Technology, May (1983).

  16. M. M. Hossain, et al., “Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes,” J. Petrol. Eng., 27 (2000).

  17. M. M. Rahman, et al., “An integrated model multiobjective design optimization of hydraulic fracturing,” J. Petrol. Eng., 31 (2001).

  18. V. N. Odintsev, “Theoretical estimate of influence exerted by borehole on the permeability of gas-saturated seam,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2001).

  19. S. V. Slastunov, G. G. Karkashadze, and K. S. Kolikov, “Analytical model for hydraulic disjointing of coal seam,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (2001).

  20. A. G. Olovyanny, “Analytical model for hydraulic disjointing of coal seam,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (2005).

  21. A. A. Nasedkina and V. N. Trufanov, “Numerical modeling of hydrofracturing in a multilayer coal seam,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 1 (2006).

  22. Yu. P. Zheltov, Mechanics of the Oil-and-Gas-bearing Reservoir [in Russian], Nedra, Moscow (1975).

    Google Scholar 

  23. C. Fairhurst, “Stress estimation in rock: a brief history and review,” Int. J. Rock Mechanics and Mining Sci., 40 (2003).

  24. J. L. Gidley, et al. (Eds.), “Recent advances in hydraulic fracturing,” SPE Monograph (1989).

  25. B. C. Haimson and F. H. Cornet, “ISRM suggested methods for rock stress estimation. Part 3: Hydraulic fracturing (HF) and/or hydraulic testing of pre-existing fractures (HTPF),” Int. J. Rock Mechanics and Mining Sci., 40 (2003).

  26. L. S. Kolodko and P. A. Martynyuk, “On development and coalescence of two pre-parallel rectilinear cracks,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (1989).

  27. T. E. Alekseeva and P. A. Martynyuk, “Crack emergence trajectories at a free surface,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 2 (1991).

  28. P. A. Martynyuk and E. N. Sher, “Development of a crack close to a circular opening with an external field of compressive stresses,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 6 (1996).

  29. P. A. Martynyuk, “Trajectory of crack formed by hydraulic fracturing near the contact of productive stratum with enclosing rocks,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (2002).

  30. E. N. Mastrojannis, L. Keer, and T. Mura, “Growth of planar cracks induced by hydraulic,” Int. J. Num. Meth. Eng., 15 (1980).

  31. D. A. Mendelsohn, “A review of hydraulic fracture modeling. Part I: General concepts, 2D models, motivation for 3D modeling,” J. Energy Res. Tech., 106 (1984).

  32. S. Mogilevskaya, et al., “Growth of pressure-induced fractures in the vicinity of a wellbore,” Int. J. Fracture, 104 (2000).

  33. V. Koshelev and A. Ghassemi, “Numerical modeling of stress distribution and crack trajectory near a fault or a natural fracture,” in: Soil and Rock America 2003; 30th US Rock Mechanics Symposium, Cambridge, Mass. Eds.: P. J. Culligan, et al. (2003).

  34. V. Koshelev and A. Ghassemi, “Hydraulic fracture propagation near a natural discontinuity,” in: Proceedings of the 28th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California (2003).

    Google Scholar 

  35. O. P. Alekseenko and A. M. Vaisman, “Certain aspects of a two-dimensional problem on the hydraulic fracturing of an elastic medium,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 3 (1999).

  36. M. P. Savruk, 2D Elasticity Problems for Bodies with Cracks [in Russian], Naukova Dumka, Kiev (1981).

    Google Scholar 

  37. A. M. Lin’kov, Complex Method of Boundary Integral Equations of Elasticity Theory [in Russian], Nauka, Saint Petersburg (1999).

    Google Scholar 

  38. A. A. Dobroskok, “Numerical modeling of the constitutive relations for a medium with cracks and contact interactions,” Doctoral Thesis [in Russian], IPMash, Saint Petersburg (2002).

    Google Scholar 

  39. A. Dobroskok, “On a new method for iterative calculation of crack trajectory,” Int. J. Fracture, 111 (2001).

  40. E. Detournay and R. Carbonell, “Fracture mechanics analysis of the breakdown process in minifrac or leak-off tests,” in: Proceedings EUROCK 94 Symposium, Delft (1994).

  41. U. Mourakami (Ed.), Stress Intensity Factors. Guide [Russian translation], 1, Mir, Moscow (1985).

    Google Scholar 

  42. N. M. Osipenko, “Studying the mechanism of brittle fracture in jointy rocks,” Candidate’s Thesis [in Russian], IFZ AN SSSR, Moscow (1972).

    Google Scholar 

  43. V. N. Nikolaevskii, “Review: Earth crust, dilatancy and earthquakes,” in: Mechanics of the Earthquake Focus [Russian translation], J. Rice (Ed.), Mir, Moscow (1982).

    Google Scholar 

  44. R. Cotterell and J. R. Rice, “Slightly curved or kinked cracks,” Int. J. Fracture, 16, No. 2 (1980).

    Google Scholar 

  45. A. M. Lin’kov and A. A. Dobroskok, “Numerical modeling of rock deformation under compression,” Fiz.-Tekh. Probl. Razrab. Polezn. Iskop., No. 4 (2001).

  46. A. A. Dobroskok, A. M. Linkov, L. Myer, and J.-C. Roegiers, “On a new approach in micromechanics of solids and rocks,” in: Rock Mechanics in the National Interest, Proceedings of the 38th US Rock Mechanics Symposium, Tinucci & Heasley (Eds), Swets&Zeitlinger Lisse (2001).

  47. A. A. Dobroskok, A. Ghassemi, and A. M. Linkov, “Extended structural criterion for numerical simulation of crack propagation under compressive loads,” Int. J. Fracture, 133 (2005).

  48. J. C. Radon, P. S. Leevers, and L. E. Culver, “Fracture toughness of PMMA under biaxial stress,” Fracture, 8 (1977).

  49. S. G. Mogilevskaya, “Numerical modeling of 2D smooth crack growth,” Int. J. Fracture, 87 (1997).

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, No. 1, pp. 45–63, January–February, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubkov, V.V., Koshelev, V.F. & Lin’kov, A.M. Numerical modeling of hydraulic fracture initiation and development. J Min Sci 43, 40–56 (2007). https://doi.org/10.1007/s10913-007-0006-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10913-007-0006-6

Keywords

Navigation