Skip to main content

Advertisement

Log in

Evaluating Diversification Hypotheses in the South American Cricetid Thaptomys nigrita (Lichtenstein, 1829) (Rodentia: Sigmodontinae): An Appraisal of Geographical Variation Based on Different Character Systems

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

Molecular surveys using mtDNA sequences have been used to identify cryptic species in sigmodontine rodents. However, where sampling is uneven, a critical appraisal of further evidence is pivotal to test whether genetic discontinuity represents different species. In order to investigate geographical variation in the Neotropical rodent Thaptomys nigrita, we analyzed patterns of morphological variation in qualitative and morphometric data, and compared our results with recent information on karyological and molecular diversity reported for the monotypic genus. Two subtle morphometric groups of populations, corresponding to karyomorphs 2n = 50 and 2n = 52, were revealed, but no qualitative aspect of craniodental morphology unambiguously distinguished them. A positive and significant association between geographical and both morphological and genetic distances suggest that the distinction between the two groups of population follows an isolation by distance model. This result, coupled with phylogeographic and karyotypic breaks coincident to a sampling gap extending for 540 km, and with the low phylogenetic resolution of molecular clades, does not allow rejecting the hypothesis that the divergent samples constitute polymorphic populations of a widely distributed species. We discuss possible determinants of these patterns and emphasize the need for an integrative approach in future efforts to disclose the evolutionary relationships of small mammals in situations of uneven sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berthier K, Galan M, Foltète JC, Charbonnel N, Cosson JF (2005) Genetic structure of the cyclic fossorial water vole (Arvicola terrestris): landscape and demographic influences. Mol Ecol 14:2861–2871

    Article  PubMed  CAS  Google Scholar 

  • Bonvicino CR, D’Andrea PS, Cerqueira R, Seuánez HN (1996) The chromosomes of Nectomys (Rodentia, Cricetidae) with 2n = 52, 2n = 56, and interspecific hybrids (2n = 54). Cytogenet Cell Genet 73:190–193

    Article  PubMed  CAS  Google Scholar 

  • Bonvicino CR, Gonçalves PR, Oliveira JA, Oliveira LFB, Mattevi MS (2008) Divergence in Zygodontomys (Rodentia: Sigmodontinae) and distribution of Amazonian Savannas. J Hered 100:322–328

    Article  PubMed  Google Scholar 

  • Bonvicino CR, Langguth A, Lindbergh SM, Paula AC (1997) An elevation gradient study of small mammals at Caparaó National Park, Southeastern Brazil. Mammalia 61:547–560

    Google Scholar 

  • Bonvicino CR, Lindbergh SM, Maroja LS (2002) Small non-flying mammals from conserved and altered areas of Atlantic Forest and Cerrado: comments on their potential use for monitoring environment. Braz J Biol 62:765–774

    Article  PubMed  CAS  Google Scholar 

  • Braggio E, Gimenez MD, Contreras JR, Justo E, Bidau CJ (1999) Karyotypic variation in populations of Ctenomys (Rodentia, Ctenomyidae) from La Pampa Province (Argentina). Caryologia 52:131–140

    Google Scholar 

  • Braun JK, Coyner BS, Mares MA, Van Den Bussche RA (2008) Phylogenetic relationships of South American grass mice of the Akodon varius group (Rodentia, Cricetidae, Sigmodontinae) in South America. J Mammal 89:768–777

    Article  Google Scholar 

  • Braun JK, Mares MA, Coyner BS, Van Den Bussche RA (2010) New species of Akodon (Rodentia: Cricetidae: Sigmodontinae) from central Argentina. J Mammal 91:387–400

    Article  Google Scholar 

  • Carleton MD, Musser GG (1989) Systematic studies of oryzomyine rodents (Muridae, Sigmodontinae): a synopsis of Microryzomys. Bull Am Mus Nat Hist 191:1–83

    Google Scholar 

  • Carnaval A (2002) Phylogeography of four frog species in forest fragments of north-eastern Brazil—a preliminary study. Integr Comp Biol 42:913–921

    Article  PubMed  Google Scholar 

  • Costa LP (2003) The historical bridge between the Amazon and the Atlantic Forest of Brazil: a study of molecular phylogeographic with small mammals. J Biogeogr 30:71–86

    Article  Google Scholar 

  • Costa LP, Pavan SE, Leite YLR, Fagundes V (2007) A new species of Juliomys (Mammalia: Rodentia: Cricetidae) from the Atlantic forest of southeastern Brazil. Zootaxa 1463:21–37

    Google Scholar 

  • Crossley DA, Jackson A, Yates J, Boydell IP (1998) Use of computed tomography to investigate cheek tooth abnormalities in chinchillas (Chinchilla laniger). J Small Anim Pract 39:385–389

    Article  PubMed  CAS  Google Scholar 

  • Davis DE (1945) The annual cycle of plants, mosquitoes, birds, and mammals in two Brazilian forests. Ecol Monogr 15:243–295

    Article  Google Scholar 

  • Davis DE (1947) Notes on the life histories of some Brazilian mammals. Bol Mus Nac Rio J Zool 76:1–8

    Google Scholar 

  • de Queiroz K, Good DA (1997) Phenetic clustering in biology: a critique. Q Rev Biol 72:1–30

    Article  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via EM algorithm. J R Statist Soc B 39:1–38

    Google Scholar 

  • Dillon J (1984) Geographic distance, environmental difference, and divergence between isolated populations. Syst Zool 33: 69–82.

    Google Scholar 

  • Ellerman JR (1941) The Families and Genera of Living Rodents II. Family Muridae. British Museum of Natural History, London

    Google Scholar 

  • Fagundes V, Scalzi-Martin JM, Sims K, Hozier J, Yonenaga-Yassuda Y (1997) ZOO-FISH of microdissection DNA library and G-banding patterns reveal the homeology between the Brazilian rodents Akodon cursor and A. montensis. Cytogenet Cell Genet 78:224–228

    Article  PubMed  CAS  Google Scholar 

  • Freitas TRO (1997) Chromosome polymorphism in Ctenomys minutus (Rodentia-Octodontidae). Braz J Genet 20:1–7

    Article  Google Scholar 

  • Gava A, Freitas TRO (2002) Characterization of a hybrid zone between chromosomally divergent populations of Ctenomys minutus (Rodentia: Ctenomyidae). J Mammal 83:843–851

    Article  Google Scholar 

  • Gava A, Freitas TRO (2003) Inter and intra-specific hybridization in tuco-tucos (Ctenomys) from Brazilian coastal plains (Rodentia: Ctenomyidae). Genetica 119:11–17

    Article  PubMed  CAS  Google Scholar 

  • Geise L, Moraes DA, Silva HS (2005) Morphometric differentiation and distributional notes of three species of Akodon (Muridae, Sigmodontinae, Akodontini) in the Atlantic coastal area of Brazil. Arq Mus Nac Rio J 63:63–74

    Google Scholar 

  • Gonçalves PR, Almeida FC, Bonvicino CR (2003) A new species of Wiedomys (Rodentia: Sigmodontinae) from Brazilian Cerrado. Mamm Biol 70:46–60

    Article  Google Scholar 

  • Gould SJ, Johnston RF (1972) Geographic variation. Annu Rev Ecol Syst 3:457–498

    Article  Google Scholar 

  • Hershkovitz P (1990) Mice of the Akodon boliviensis group size class (Sigmodontinae, Cricetidae), with the description of two new species from Brazil. Fieldiana Zool 57:1–35

    Google Scholar 

  • Hershkovitz P (1998) Report on some sigmodontine rodents collected in southeastern Brazil with descriptions of a new genus and six new species. Bonn Zool Beitr 47:193–256

    Google Scholar 

  • Jayat PJ, D’Elía G, Pardiñas UFJ, Miotti MD, Ortiz PE (2008) A new species of the genus Oxymycterus (Mammalia: Rodentia: Cricetidae) from the vanishing Yungas of Argentina. Zootaxa 1911:31–51

    Google Scholar 

  • Jayat JP, Ortíz PE, Salazar-Bravo J, Pardiñas UFJ, D’Elía G (2010) The Akodon boliviensis species group (Rodentia: Cricetidae: Sigmodontinae) in Argentina: species limits and distribution, with the description of a new entity. Zootaxa 2409:1–61

    Google Scholar 

  • Kim J, Lee JY, Han TS, Han K, Hang SS, Bae CS, Choi SH (2005) A case of maloccluded incisor teeth in a beaver (Castor canadensis). J Vet Sci 6:173–175

    PubMed  Google Scholar 

  • Le Boulengé E, Legendre P, de Le Court C, Le Boulengé-Nguyen P, Languy M (1996) Microgeographic morphological differentiation in muskrats. J Mammal 77:684–701

    Article  Google Scholar 

  • Legendre LFJ (2002) Malocclusions in guinea pigs, chinchillas and rabbits. Can Vet J 43:385–390

    PubMed  Google Scholar 

  • Leite YLR, Costa LP (2002) Peter Wilhelm Lund e a fauna de mamíferos do Vale do Rio das Velhas. O Carste 14:32–41

    Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Macholan M (2001) Multivariate analysis of morphometric variation in Asian Mus and Sub-Saharan Nannomys (Rodentia: Muridae). Zool Anz 240:7–14

    Article  Google Scholar 

  • Mahalanobis PC (1948) Historical note on the D2-statistic. Sankhya 9:237–240

    Google Scholar 

  • Mantel RM (1967) The detection of disease clustering and a general regression approach. Cancer Res 27:209–220

    PubMed  Google Scholar 

  • Massoia E (1963) Sobre la posición sistemática y distribución geográfica de Akodon (Thaptomys) nigrita (Rodentia—Cricetidae). Physis 24:73–80

    Google Scholar 

  • Mathworks (1992) Matlab Reference Guide. The Mathworks, Inc, Natick

    Google Scholar 

  • Mayr E, Ashlock PD (1991) Principles of Systematic Biology. Harvard University Press, Cambridge

    Google Scholar 

  • Miller WA (1977) Genetic traumatic occlusion in the mouse. J Periodontal Res 12:64–72

    Article  PubMed  CAS  Google Scholar 

  • Moojen J (1952) Os roedores do Brasil. Ministério da Educação e Saúde, Instituto Nacional do Livro, Biblioteca Científica Brasileira, Rio de Janeiro

    Google Scholar 

  • Moreira JC, Manduca EG, Gonçalves PR, Morais MM Jr, Pereira RF, Lessa G, Dergam JA (2009) Small mammals from Serra do Brigadeiro State Park, Minas Gerais, southeastern Brazil: species composition and elevational distribution. Arq Mus Nac Rio J 67:103–118

    Google Scholar 

  • Mori SA, Boom BM, Carvalho AM, Santos TS (1983) Southern Bahian moist forests. Bot Rev 49:155–232

    Article  Google Scholar 

  • Myers P, Patton JL, Smith MF (1990) Revision of the boliviensis group of Akodon (Muridae: Sigmodontinae), with emphasis on Peru and Bolivia. Misc Publ Mus Zool Univ Mich 177:1–105

    Google Scholar 

  • Nachman MW (1992) Meiotic studies of Robertsonian polymorphisms in the South American marsh rat Holochilus brasiliensis. Cytogenet Cell Genet 61:17–24

    Article  PubMed  CAS  Google Scholar 

  • Nachman MW, Myers P (1989) Exceptional chromosomal mutations in a rodent population are not strongly underdominant. Proc Natl Acad Sci USA 86:6666–6670

    Article  PubMed  CAS  Google Scholar 

  • Nachman MW, Searle JB (1995) Why is the house mouse karyotype so variable? Trends Ecol Evol 10:397–402

    Article  PubMed  CAS  Google Scholar 

  • Naxara L, Pinotti BT, Pardini R (2009) Seasonal microhabitat selection by terrestrial rodents in an old-growth Atlantic Forest. J Mammal 90:404–415

    Article  Google Scholar 

  • Pardiñas UFJ, D’Elía G, Cirignoli S, Suarez P (2005) A new species of Akodon (Rodentia, Cricetidae) from the Northern Campos grasslands of Argentina. J Mammal 86:462–474

    Article  Google Scholar 

  • Pardini R, Umetsu F (2006) Non-volant small mammals from the Morro Grande Forest Reserve: distribution of species and diversity in an Atlantic Forest area. Biota Neotrop 6:1–22

    Article  Google Scholar 

  • Paresque R, Souza WP, Mendes SL, Fagundes V (2004) Composição cariotípica da fauna de roedores e marsupiais de duas áreas de Mata Atlântica do Espírito Santo, Brasil. Bol Mus Biol M Leitão Nova Ser 17:5–33

    Google Scholar 

  • Patton JL (1967) Chromosome studies of certain pocket mice, genus Perognathus (Rodentia: Heteromyidae). J Mammal 48:27–37

    Article  PubMed  CAS  Google Scholar 

  • Pellegrino KCM, Rodrigues MT, Waite AN, Morando M, Yassuda YY, Sites JW (2005) Phylogeography and species limits in the Gymnodactylus darwinii complex (Gekkonidae, Squamata): genetic structure coincides with river systems in the Brazilian Atlantic forest. Biol J Linn Soc 85:13–26

    Article  Google Scholar 

  • Puorto G, Salomão MG, Theakston RDG, Thorpe RS, Warrell DA, Wüster W (2001) Combining mitochondrial DNA sequences and morphological data to infer species boundaries: phylogeography of lanceheaded pitvipers in the Brazilian Atlantic forest, and the status of Bothrops pradoi (Squamata: Serpentes: Viperidae). J Evol Biol 14:527–538

    Article  CAS  Google Scholar 

  • Reed KM, Greenbaum IF, Sites JW Jr (1995) Cytogenetic analysis of chromosomal intermediates from a hybrid zone between two chromosomal races of the Scelophorus grammicus complex (Sauria, Phrynosomatidae). Evolution 49:37–47

    Article  Google Scholar 

  • Reig OA (1987) An assessment of the systematics and evolution of the Akodontini, with the description of new fossil species of Akodon (Cricetidae, Sigmodontinae). In: Patterson BD, Tim RM (eds) Studies in Neotropical Mammalogy. Essays in Honor of Philip Hershkovitz. Fieldiana Zoology, Chicago, pp 347–399

    Google Scholar 

  • Reis SF, Duarte LC, Monteiro LR, Von Zuben FJ (2002) Geographic variation in cranial morphology in Thrichomys apereoides: II. Geographic units, morphological discontinuities, and sampling gaps. J Mammal 83:345–353

    Article  Google Scholar 

  • Rieseberg LH (2001) Chromosomal rearrangements and speciation. Trends Ecol Evol 16:351–358

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Livingstone K (2003) Chromosomal speciation in primates. Science 300:267–268

    Article  PubMed  CAS  Google Scholar 

  • Sites JW Jr, Nicholas HB, Reed KM (1995) The genetic structure of a hybrid zone between two chromosome races of the Sceloporus grammicus complex (Sauria, Phrynosomatidae) in central Mexico. Evolution 49:9–36

    Article  Google Scholar 

  • Smith MF, Patton JL (1999) Phylogenetic relationships and the radiation of sigmodontine rodents in South America; evidence from cytochrome b. J Mammal Evol 6:89–128

    Article  Google Scholar 

  • Sneath PHA, Sokal RR (1973) Numerical Taxonomy: The Principles and Practice of Numerical Classification. W.H Freeman and Company, San Francisco

    Google Scholar 

  • Spirito F (1998) The role of chromosomal change in speciation. In: Howard DJ, Berlocher SH (eds) Endless Forms: Species and Speciation. Oxford University Press, Oxford, pp 320–329

    Google Scholar 

  • Strauss RE (1985) Evolutionary allometry and variation in body form in the South American catfish genus Corydoras (Callichthyidae). Syst Zool 34:381–396

    Article  Google Scholar 

  • Strauss RE, Atanassov MN, Oliveira JA (2003) Evaluation of the principal-component and expectation-maximization methods for estimating missing data in morphometric studies. J Vertebr Paleontol 23:284–296

    Article  Google Scholar 

  • Thomas O (1902) On the mammals from the Serra do Mar of Paraná collected by Mr. Alphonse Robert. Ann Mag Nat Hist 7(9):59–64

    Google Scholar 

  • Thomas O (1916) The grouping of the South-American Muridae commonly referred to Akodon. Ann Mag Nat Hist 8(18):336–340

    Google Scholar 

  • Tomasco IH, Lessa EP (2007) Phylogeography of the tuco-tuco: mtDNA variation and its implication for chromosomal differentiation. In: Kelt DA, Lessa EP, Salazar-Bravo JA, Patton JL (eds) The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. Pearson. University of California Publications in Zoology, Berkeley, pp 859–882

    Google Scholar 

  • Vaz SM (2005) Mamíferos colecionados pelo Serviço de Estudos e Pesquisas sobre a Febre Amarela nos municípios de Ilhéus e Buerarema, Estado da Bahia, Brasil. Arq Mus Nac Rio J 63:21–28

    Google Scholar 

  • Ventura K, de Silva MJJ, Fagundes V, Pardini R, Yonenaga-Yassuda Y (2004) An undescribed karyotype for Thaptomys (2n = 50) and the mechanism of differentiation from Thaptomys nigrita (2n = 52) evidenced by FISH and Ag–NORs. Caryologia 57:89–97

    Google Scholar 

  • Ventura K, de Silva MJJ, Yonenaga-Yassuda Y (2010) Thaptomys Thomas 1915 (Rodentia, Sigmodontinae, Akodontini) with karyotypes 2n = 50, FN = 48 and 2n = 52, FN = 52: Two monophyletic lineages recovered by molecular phylogeny. Genet Mol Biol 33:256–261

    Article  PubMed  Google Scholar 

  • Von Zuben FJ, Duarte LC, Stangenhaus G, Pessôa LM, Reis SF (1998) Bootstrap confidence regions for canonical variates: application to studies of evolutionary differentiation. Biometrical J 40:327–339

    Article  Google Scholar 

  • Voss RS (1988) Systematics and ecology of Ichthyomyine rodents (Muroidea): patterns of morphological evolution in a small adaptive radiation. Bull Am Mus Nat Hist 188:260–493

    Google Scholar 

  • Voss RS (1991) An introduction to the Neotropical muroid genus Zygodontomys. Bull Am Mus Nat Hist 210:1–113

    Google Scholar 

  • Voss RS (1993) A revision of the Brazilian muroid rodent genus Delomys with remarks on “Thomasomyine” characters. Am Mus Novitates 3073:1–44

    Google Scholar 

  • Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

  • Yonenaga Y (1975) Karyotypes and chromosome polymorphism in Brazilian rodents. Caryologia 28:269–286

    Google Scholar 

  • Yonenaga Y, Kasahara S, Almeida EJC, Peracchi AL (1975) Chromosomal banding patterns in Akodon arviculoides (2n = 14), Akodon sp (2n = 24 and 25) and male hybrids with 19 chromosomes. Cytogenet Cell Genet 15:388–399

    Article  PubMed  CAS  Google Scholar 

  • Zink RM (1994) The geography of mitochondrial DNA variation, population structure, hybridization and species limits in the fox sparrow (Passerella iliaca). Evolution 48:96–111

    Article  Google Scholar 

Download references

Acknowledgments

A preliminary version of this work formed part of a thesis by J. Moreira submitted in partial fulfilment of the requirements for an M.Sc. degree in Zoology at the Museu Nacional, Universidade Federal do Rio de Janeiro. We are indebted to Drs. Mário de Vivo (Museu de Zoologia, Universidade de São Paulo), Gisele Lessa (Museu de Zoologia, Universidade Federal de Viçosa), and Raquel Moura (Coleção de Mamíferos, Universidade Federal de Minas Gerais) for granting access to specimens deposited in collections under their care. We thank Cibele R. Bonvicino, Edmar G. Manduca, Júlio F. Vilela, Liliani M. Tiepolo, and Pablo R. Gonçalves for support in the field and for generously sharing valuable chromosomal preparations used in this work. Dr Leila M. Pessoa kindly provided laboratory facilities. Special thanks are due to Christopher J. Tribe and Pablo R. Gonçalves for revising the English grammar and structure, and for comments and suggestions on previous drafts. Guillermo D’Elia and Bruce D. Patterson thoroughly reviewed the submitted manuscript and provided valuable comments that greatly improved the quality of this manuscript. While conducting this work, Jânio C. Moreira was supported by a student fellowship from Coordenação para Aperfeiçoamento do Pessoal do Ensino Superior (CAPES), and João A. Oliveira by a research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Alves de Oliveira.

Appendix 1

Appendix 1

Gazetter of collecting localities and list of specimens examined. All localities are in Brazil. States are listed in bold uppercase. Sample numbers in roman and bold are followed by localities names (when available) and municipality name in bold, and reference coordinates in parenthesis are from the municipality headquarters. Asterisks indicate specimens karyotyped for this study. Museum acronyms are as defined in the Material and Methods.

BAHIA. 1. Fazenda Almada, Ilhéus (14°39′S; 39°11′W), MN 8731, 8734, 8742–43, 8746, 8752, 8754, 8763, 8769, 8774–75, 8795, 8797, 8808, 8816, 8821–22, 8840, 8847–48, 8850, 8858, 9607, 29469, 68557–58, 68573–74, 68579–80, 68583–84; 2. Banco da Vitória/Fazenda Pirataquissé, Ilhéus (14°48′S; 39°07′W), MN 8720, 8724, 8729, 8748–49, 8755, 8759, 8764, 8767, 8780, 8782, 8788, 8792, 8798, 8801, 8805–06, 8811, 8817, 8820, 8824–27, 8834, 8838, 8842, 8844, 8846, 8849, 8854–55, 9390, 10513, 68565–66, 68571–72, 68578; 3. Fazenda Limeira, Ilhéus (14°49′S; 39°02′W): UFMG 2238; 4. Fazenda Ribeirão da Fortuna, Buerarema, 14°57′S; 39°19′W): MN 8719, 8721, 8727, 8730, 8735, 8750, MN 8760–62, 8778, 8785, 8793, 8802–04, 8807, 8814, 8823, 8828, 8833, 8835, 8845, 10836, 11515, 29468, 68548–49, 68563, 68570, 68577, 68582; 5. Vila Brasil, Una (15°18′S; 39°04′W), uncatalogued MZUSP (DIXO 206, 207, 209; RP 57, 65, 1691); Fazenda Sapucaieira, uncatalogued MZUSP (DIXO 79, 255; RP 289, 319, 325, 397); Maruim, uncatalogued MZUSP (DIXO 161; RP 469); Fazenda Jueirana, UFMG 2017–18, 2180–81; Fazenda Bolandeira, UFMG 2020; Reserva Biológica de Una, UFMG 2019: ESPÍRITO SANTO: 6. Santa Teresa, 19°55′S; 40°36′W), MN 5348–49, 5358, 5367, 5409, 5415, 29107, 29109, 29111; 9. Castelo/Cachoeiro do Itapemirim, 20°53′S; 41°42′W, 20°51′S; 41°06′W), Km 3 Forno Grande, MN 29096, 29104, 29110; Km 4 Nova Castelinho, MN 29097–103, 29105. MINAS GERAIS: 7. Parque Nacional do Caparaó, Alto Caparaó, 20°22′S; 41°48′W), uncatologued MN (PRG 1144 (*), 1147, 1153, 1166–68, 1170 (*), 1173, 1175 (*), 1177–1178, 1185 (*), 1186 (*), 1187 (*), 1194 (*), 1198 (*), 1204 (*), 1206 (*); 8. Parque Estadual da Serra do Brigadeiro, Fervedouro, 20°43′S; 42°28′W): Fazenda da Neblina, MZUFV 1109–17, 1118 (*), 1123, 1127–30, 1143–44, 1145 (*), 1146–47, 1189–93, 1208–12, 1222–25, 1239, 1270–71, 1276; Fazenda Brigadeiro, MZUFV 1582–89, 1590 (*), 1591, 1839; Serra das Cabeças, MZUFV 1240, 1247, 1255, 1260–62, 1272–75; 12. Passa Quatro/Delfim Moreira (22°23′S, 44°58′W; 22°30′S, 45° 17′W): Fazenda do Itaguaré, UFMG 1838; Fazenda do Onça, UFMG 1839; RIO DE JANEIRO: 11. Fazenda São José da Serra, Sumidouro (22°03′S; 42°41′W), MZUSP 29384–29387, MN 31366, 31376; 13. Teresópolis (22°26′S; 42°59′W), Fazenda Boa Fé, MN 6334, 6842, 6930, 6933, 6936–37, 6942, 6948–49, 6951, 6953, 6956–57, 6961, 6964, 6969–71, 6974–75, 6978–79; Fazenda Guinle, MN 6929, 6932, 6934, 6944–45, 6947, 6955, 6958, 6960, 6965, 6976, 6980–81; Vieira, MN 63107; 16. Pedra Branca, Paraty (23°13′S; 44°43′W), MN 6315, 6364, 6366, 6386, 6402, 32851; SÃO PAULO: 10. São João da Boa Vista (21°58′S; 46°47′W), MN 66199; 15. Campos do Jordão (22°44′S; 45°35′W), MZUSP 2129, 2132; 14. Piracicaba (22°43′S; 47°38′W), MZUSP 1719; 17. Salesópolis (23°32′S, 45°51′W): MN 32451–52; Boracéia, MZUSP 9579, 9736, 9793, 9797, 9889, 10191–92, 10220, 11006, 11014, 20667–69, 20671; 18. Casa Grande, Biritiba-Mirim (23°35′S, 46°02′W): UFMG 05, 91, 97, 110, 171, 189; MZUSP 11432, 21100, 21107, 21109, 21120, 21123; 19. Cotia (23°37′S; 46°56′W), MZUSP 9736, Reserva do Morro Grande, uncatalogued MN (PRG 1306, 1315, 1326–1328, 1340); 20. Paranapiacaba (23°47′S; 46°19′W), MZUSP 1788–89; 21. Ilha de São Sebastião, Ilhabela (23°49′S; 45°21′W), MZUSP 29383; 24. Fazenda Intervales, Capão Bonito (24°15′S; 48°10′W), MZUSP 27215–22; 26. Iguape (24°43′S; 47°33′W), Barra do Icapara, MZUSP 20650–53, 20655, 20659, 20661, 20664–66, 23850, 24008; Barra do Rio Ribeira, MZUSP 10703, 10707; Costão dos Engenhos, MZUSP 10682; PARANÁ: 22. Fênix (23°54′S; 51°57′W), uncatalogued MHNCI (CTX 4628, 5123, 5173); 23. Ortigueira (24°12′S; 50°55′W), MZUSP 31619, 31715–16; 25. Fazenda Monte Alegre, Telêmaco Borba (24°21′S; 50°37′W), MN 68212 (*), 68218–19, 68222, 68224–27, 68231, 68236, 68240, 68246 (*), 68252 (*), 68253, 68261, 68263–65, 68269–70, 68277–79, 68300, 68302–04, 68308–11, 68313–15, 68321–22; 27. Mananciais da Serra, Piraquara (25°21′S; 49°04′W), JAO 969 (*), 985 (*), 986 (*), 987 (*), 998, 1004 (*), 1020 (*), 1021, 1024. SANTA CATARINA: 28. Corupá (26°26′S; 49°14′W), MZUSP 848. RIO GRANDE DO SUL: 29. Parque Estadual do Turvo, Tenente Portela (27°22′S; 53°45′W), uncatalogued MN (PF 04, 08, 010, 021); 30. Itapeva, Torres (22°20′07′S; 53°45′57′W), uncatalogued MN (GH 013).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, J.C., de Oliveira, J.A. Evaluating Diversification Hypotheses in the South American Cricetid Thaptomys nigrita (Lichtenstein, 1829) (Rodentia: Sigmodontinae): An Appraisal of Geographical Variation Based on Different Character Systems. J Mammal Evol 18, 201–214 (2011). https://doi.org/10.1007/s10914-011-9155-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-011-9155-0

Keywords

Navigation