Skip to main content
Log in

Lattice Boltzmann Model Based on the Rebuilding-Divergency Method for the Laplace Equation and the Poisson Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, a new lattice Boltzmann model based on the rebuilding-divergency method for the Poisson equation is proposed. In order to translate the Poisson equation into a conservation law equation, the source term and diffusion term are changed into divergence forms. By using the Chapman-Enskog expansion and the multi-scale time expansion, a series of partial differential equations in different time scales and several higher-order moments of equilibrium distribution functions are obtained. Thus, by rebuilding the divergence of the source and diffusion terms, the Laplace equation and the Poisson equation with the second accuracy of the truncation errors are recovered. In the numerical examples, we compare the numerical results of this scheme with those obtained by other classical method for the Green-Taylor vortex flow, numerical results agree well with the classical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, S.Y., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329–364 (1998)

    Article  MathSciNet  Google Scholar 

  2. Qian, Y.H., d’Humieres, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equations. Europhys. Lett. 17(6), 479–484 (1992)

    Article  MATH  Google Scholar 

  3. Higuera, F., Succi, S., Benzi, R.: Lattice gas dynamics with enhanced collisions. Europhys. Lett. 9, 345–349 (1989)

    Article  Google Scholar 

  4. Benzi, R., Succi, S., Vergassola, M.: The lattice Boltzmann equation: theory and applications. Phys. Rep. 222, 147–197 (1992)

    Article  Google Scholar 

  5. Mendoza, M., Boghosian, B.M., Herrmann, H.J., Succi, S.: Fast lattice Boltzmann solver for relativistic hydrodynamics. Phys. Rev. Lett. 105, 014502 (2010)

    Article  Google Scholar 

  6. Luo, L.-S.: Theory of the lattice Boltzmann method: lattice Boltzmann method for nonideal gases. Phys. Rev. E 62, 4982 (2000)

    Article  MathSciNet  Google Scholar 

  7. Shan, X.W., Chen, H.D.: Lattice Boltzmann model of simulating flows with multiple phases and components. Phys. Rev. E 47, 1815 (1993)

    Article  Google Scholar 

  8. Shan, X.W., Chen, H.D.: Simulation of non-ideal gases liquid-gas phase transitions by the lattice Boltzmann equation. Phys. Rev. E 49, 2941 (1994)

    Article  Google Scholar 

  9. Swift, M., Osborn, W., Yeomans, J.: Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 75, 830 (1995)

    Article  Google Scholar 

  10. Gustensen, K., Rothman, D.H., Zaleski, S., et al.: Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 43, 4320–4327 (1991)

    Article  Google Scholar 

  11. Premnath, K.N., Abraham, J.: Three-dimensional multi-relaxation lattice Boltzmann models for multiphase flows. J. Comput. Phys. 224, 539–559 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dawson, S.P., Chen, S.Y., Doolen, G.: Lattice Boltzmann computations for reaction-diffusion equations. J. Chem. Phys. 98, 1514–1523 (1993)

    Article  Google Scholar 

  13. Holdych, D.J., Georgiadis Buckius, R.O.: Magration of a van der Waals bubble: Lattice Boltzmann formulation. Phys. Fluids 13, 817 (2001)

    Article  Google Scholar 

  14. Swift, M.R., Orlandini, E., Osborn, W.R., et al.: Lattice Boltzmann simulations of liquid-gas and binary systems. Phys. Rev. E 54, 5041 (1996)

    Article  Google Scholar 

  15. Maier, R.S., Bernard, R.S., Grunau, D.W.: Boundary conditions for the lattice Boltzmann method. Phys. Fluids 6, 1788 (1996)

    Article  Google Scholar 

  16. Succi, S., Foti, E., Higuera, F.J.: 3-Dimensional flows in complex geometries with the lattice Boltzmann method. Europhys. Lett. 10, 433 (1989)

    Article  Google Scholar 

  17. Ladd, A.: Numerical simulations of particle suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluids Mech. 271, 311 (1994)

    Article  MathSciNet  Google Scholar 

  18. Filippova, O., Hanel, D.: Lattice Boltzmann simulation of gas-particle flow in filtes. Comput. Fluids 26, 697–712 (1997)

    Article  MATH  Google Scholar 

  19. Sun, C.H.: Lattice-Boltzmann model for high speed flows. Phys. Rev. E 58, 7283–7287 (1998)

    Article  Google Scholar 

  20. De Cicco, M., Succi, S., Balla, G.: Nonlinear stability of compressible thermal lattice BGK model. SIAM J. Sci. Comput. 21, 366–377 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kataoka, T., Tsutahara, M.: Lattice Boltzmann method for the compressible Euler equations. Phys. Rev. E 69(5), 056702 (2004)

    Article  MathSciNet  Google Scholar 

  22. Yan, G.W.: A lattice Boltzmann equation for waves. J. Comput. Phys. 161, 61–69 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zhang, J.Y., Yan, G.W., Shi, X.B.: Lattice Boltzmann model for wave propagation. Phys. Rev. E 80, 026706 (2009)

    Article  Google Scholar 

  24. Zhang, J.Y., Yan, G.W.: Lattice Boltzmann method for one and two-dimensional Burgers equation. Physica A 387, 4771–4786 (2008)

    Article  MathSciNet  Google Scholar 

  25. Zhang, J.Y., Yan, G.W.: A lattice Boltzmann model for the Korteweg–de Vries equation with two conservation laws. Comput. Phys. Commun. 180, 1054–1062 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Yan, G.W., Yuan, L.: Lattice Bhatnagar-Gross-Krook model for the Lorenz attractor. Physica D 154, 43–50 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  27. Zhou, J.G.: Lattice Boltzmann Methods for Shallow Water Flows. Springer, Berlin (2000)

    Google Scholar 

  28. Ginzburg, I.: Variably saturated flow described with the anisotropic lattice Boltzmann methods, J. Comput. Fluids 25, 831–848 (2006)

    Article  Google Scholar 

  29. Succi, S.: Numerical solution of the Schrödinger equation using discrete kinetic theory. Phys. Rev. E 53, 1969–1975 (1996)

    Article  Google Scholar 

  30. Succi, S.: Lattice quantum mechanics: an application to Bose-Einstein condensation. Int. J. Mod. Phys. C 9, 1577–1585 (1998)

    Article  Google Scholar 

  31. Palpacelli, S., Succi, S.: Numerical validation of the quantum lattice Boltzmann scheme in two and three dimension. Phys. Rev. E 75, 066704 (2007)

    Article  MathSciNet  Google Scholar 

  32. Palpacelli, S., Succi, S., Spiggler, R.: Ground-state computation of Bose-Einstein condensates by an imaginary-time quantum lattice Boltzmann scheme. Phys. Rev. E 76, 036712 (2007)

    Article  Google Scholar 

  33. Zhong, L.H., Feng, S.D., Dong, P., Gao, S.T.: Lattice Boltzmann schemes for the nonlinear Schrödinger equation. Phys. Rev. E 74, 036704 (2006)

    Article  Google Scholar 

  34. Hirabayashi, M., Chen, Y., Ohashi, H.: The lattice BGK model for the Poisson equation. JSME Int. J. Ser. B 44, 45–52 (2001)

    Article  Google Scholar 

  35. Chai, Z.H., Shi, B.C.: A novel lattice Boltzmann model for the Poisson equation. Appl. Math. Model. 32, 2050–2058 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Wang, M.R., Wang, J.K., Chen, S.Y.: Roughness and cavitations effect on electro-osmotic flows in rough microchannels using the lattice Poisson-Boltzmann methods. J. Comput. Phys. 226, 836–851 (2007)

    Article  MATH  Google Scholar 

  37. Dong, Y.F., Zhang, J.Y., Yan, G.W.: A higher-order moment method of the lattice Boltzmann model for the conservation law equation. Appl. Math. Model. 34, 481–494 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Bernashi, M., Succi, S., Chen, H.: Accelerated lattice schemes for steady-state flows simulations. J. Sci. Comput. 16, 135–144 (2001)

    Article  MathSciNet  Google Scholar 

  39. Guo, Z.L., Zhao, T.S., Shi, Y.: Preconditioned lattice-Boltzmann method for steady flows. Phys. Rev. E 70, 066706 (2004)

    Article  Google Scholar 

  40. Premnath, K.N., Pattison, M.J., Banerjee, S.: Steady state convergence acceleration of the generalized lattice Boltzmann equation with forcing term through preconditioning. J. Comput. Phys. 228, 746–769 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  41. Wang, M.R., Pan, N.: Numerical analyses of effective dielectric constant of multiphase microporous media. J. Appl. Phys. 101, 114102 (2007)

    Article  Google Scholar 

  42. Wang, M.R., Meng, F.K., Pan, N.: Transport properties of functionally graded materials. J. Appl. Phys. 102, 033514 (2007)

    Article  Google Scholar 

  43. Wang, M.R., Wang, J.K., Pan, N., Chen, S.Y.: Mesoscopic predictions of the effective thermal conductivity for microscale random porous media. Phys. Rev. E 75, 036702 (2007)

    Article  Google Scholar 

  44. Zhang, J.Y., Yan, G.W., Dong, Y.F.: A new lattice Boltzmann model for the Laplace equation. Appl. Math. Comput. 215, 539–547 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  45. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  46. Melchionna, S.: Altered inertial response of generic degrees of freedom. J. Chem. Phys. 121, 4534–4539 (2004)

    Article  Google Scholar 

  47. Mickens, RE, Gumel, A.B.: Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equation. J. Sound Vib. 257, 791–797 (2002)

    Article  MathSciNet  Google Scholar 

  48. Xin, X.K., Liu, R.X., Jiang, B.C.: Computational Fluid Dynamics. National University of Defence Technology Press, Changsha (1987), (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangwu Yan.

Additional information

This work is Project 20092005 supported by Graduate Innovation Fund of Jilin University and the Chuangxin Foundation of Jilin University (No. 2004CX041).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Yan, G. & Yan, B. Lattice Boltzmann Model Based on the Rebuilding-Divergency Method for the Laplace Equation and the Poisson Equation. J Sci Comput 46, 470–484 (2011). https://doi.org/10.1007/s10915-010-9414-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-010-9414-x

Keywords

Navigation