Skip to main content
Erschienen in: Journal of Scientific Computing 1/2015

01.10.2015

A New Lax–Wendroff Discontinuous Galerkin Method with Superconvergence

verfasst von: Wei Guo, Jing-Mei Qiu, Jianxian Qiu

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Superconvergence of discontinuous Galerkin (DG) methods for hyperbolic conservation laws has been intensively studied in different settings in the past. For example, the numerical solution by a semi-discrete DG scheme is superconvergent with order \(2k+1\) in the negative-order norms, when the solution is globally smooth. Hence the accuracy of the numerical solution can be enhanced to \((2k+1)\)th order accuracy by simply applying a carefully designed post-processor (Cockburn et al. in Math Comput 72:577–606, 2003). In this paper, we investigate superconvergence for the DG schemes coupled with Lax–Wendroff (LW) time discretization (LWDG). Through numerical experiments, we find that the original LWDG scheme developed in Qiu et al. (Comput Methods Appl Mech Eng 194:4528–4543, 2005) does not exhibit superconvergence properties mentioned above. In order to restore superconvergence, we propose to use the techniques from the local DG scheme to reconstruct high order spatial derivatives, while, in the original LWDG formulation, the high order derivatives are obtained by direct differentiation of the numerical solution. A collection of 1-D and 2-D numerical experiments are presented to verify superconvergence properties of the newly proposed LWDG scheme. We also perform Fourier analysis via symbolic computations to investigate the superconvergence of the proposed scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Adjerid, S., Klauser, A.: Superconvergence of discontinuous finite element solutions for transient convection–diffusion problems. J. Sci. Comput. 22, 5–24 (2005)MathSciNetCrossRef Adjerid, S., Klauser, A.: Superconvergence of discontinuous finite element solutions for transient convection–diffusion problems. J. Sci. Comput. 22, 5–24 (2005)MathSciNetCrossRef
2.
Zurück zum Zitat Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198, 106–130 (2004)MathSciNetCrossRefMATH Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198, 106–130 (2004)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27, 5–40 (2006)MathSciNetCrossRefMATH Ainsworth, M., Monk, P., Muniz, W.: Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27, 5–40 (2006)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Bramble, J., Schatz, A.: Higher order local accuracy by averaging in the finite element method. Math. Comput. 31, 94–111 (1977)MathSciNetCrossRefMATH Bramble, J., Schatz, A.: Higher order local accuracy by averaging in the finite element method. Math. Comput. 31, 94–111 (1977)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Cao, W. , Zhang, Z., and Zou, Q.: Superconvergence of discontinuous Galerkin method for linear hyperbolic equations. arXiv:1311.6938 Cao, W. , Zhang, Z., and Zou, Q.: Superconvergence of discontinuous Galerkin method for linear hyperbolic equations. arXiv:​1311.​6938
6.
Zurück zum Zitat Cheng, Y., Shu, C.-W.: Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227, 9612–9627 (2008)MathSciNetCrossRefMATH Cheng, Y., Shu, C.-W.: Superconvergence and time evolution of discontinuous Galerkin finite element solutions. J. Comput. Phys. 227, 9612–9627 (2008)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Cheng, Y., Shu, C.-W.: Superconvergence of local discontinuous Galerkin methods for one-dimensional convection–diffusion equations. Comput. Struct. 87, 630–641 (2009)CrossRef Cheng, Y., Shu, C.-W.: Superconvergence of local discontinuous Galerkin methods for one-dimensional convection–diffusion equations. Comput. Struct. 87, 630–641 (2009)CrossRef
8.
Zurück zum Zitat Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection–diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)MathSciNetCrossRefMATH Cheng, Y., Shu, C.-W.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin schemes for linear hyperbolic and convection–diffusion equations in one space dimension. SIAM J. Numer. Anal. 47, 4044–4072 (2010)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Cockburn, B., Luskin, M., Shu, C.-W., Suli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72, 577–606 (2003)MathSciNetCrossRefMATH Cockburn, B., Luskin, M., Shu, C.-W., Suli, E.: Enhanced accuracy by post-processing for finite element methods for hyperbolic equations. Math. Comput. 72, 577–606 (2003)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.-W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52, 411–435 (1989)MathSciNetMATH
11.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection \(P^{1}\)-discontinuous Galerkin finite element method for scalar conservation laws. ESAIM Math. Model. Numer. Anal. 25, 337–361 (1991)MathSciNetMATH Cockburn, B., Shu, C.-W.: The Runge–Kutta local projection \(P^{1}\)-discontinuous Galerkin finite element method for scalar conservation laws. ESAIM Math. Model. Numer. Anal. 25, 337–361 (1991)MathSciNetMATH
12.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: The local discontinuous Galerkin method for time-dependent convection–diffusion systems. SIAM J. Numer. Anal. 35, 2440–2463 (1998)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)MathSciNetCrossRefMATH Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16, 173–261 (2001)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefMATH Gottlieb, S., Shu, C.-W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43, 89–112 (2001)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Guo, W., Li, F., Qiu, J.-X.: Local-structure-preserving discontinuous Galerkin methods with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. J. Sci. Comput. 47, 239–257 (2011)MathSciNetCrossRefMATH Guo, W., Li, F., Qiu, J.-X.: Local-structure-preserving discontinuous Galerkin methods with Lax–Wendroff type time discretizations for Hamilton–Jacobi equations. J. Sci. Comput. 47, 239–257 (2011)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Guo, W., Zhong, X., Qiu, J.-M.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: Eigen-structure analysis based on Fourier approach. J. Comput. Phys. 235, 458–485 (2013)MathSciNetCrossRefMATH Guo, W., Zhong, X., Qiu, J.-M.: Superconvergence of discontinuous Galerkin and local discontinuous Galerkin methods: Eigen-structure analysis based on Fourier approach. J. Comput. Phys. 235, 458–485 (2013)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Hu, F., Hussaini, M., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)CrossRefMATH Hu, F., Hussaini, M., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)CrossRefMATH
18.
Zurück zum Zitat Ji, L., Xu, Y., Ryan, J.: Accuracy-enhancement of discontinuous Galerkin solutions for convection–diffusion equations in multiple-dimensions. Math. Comput. 81, 1929–1950 (2012)MathSciNetCrossRefMATH Ji, L., Xu, Y., Ryan, J.: Accuracy-enhancement of discontinuous Galerkin solutions for convection–diffusion equations in multiple-dimensions. Math. Comput. 81, 1929–1950 (2012)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Ji, L., Xu, Y., Ryan, J.: Negative-order norm estimates for nonlinear hyperbolic conservation laws. J. Sci. Comput. 54, 531–548 (2013)MathSciNetCrossRefMATH Ji, L., Xu, Y., Ryan, J.: Negative-order norm estimates for nonlinear hyperbolic conservation laws. J. Sci. Comput. 54, 531–548 (2013)MathSciNetCrossRefMATH
20.
22.
Zurück zum Zitat Qiu, J.-X., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194, 4528–4543 (2005)MathSciNetCrossRefMATH Qiu, J.-X., Dumbser, M., Shu, C.-W.: The discontinuous Galerkin method with Lax–Wendroff type time discretizations. Comput. Methods Appl. Mech. Eng. 194, 4528–4543 (2005)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Qiu, J.-X., Shu, C.-W.: Finite difference WENO schemes with Lax–Wendroff type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198 (2003)MathSciNetCrossRefMATH Qiu, J.-X., Shu, C.-W.: Finite difference WENO schemes with Lax–Wendroff type time discretizations. SIAM J. Sci. Comput. 24, 2185–2198 (2003)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Qiu, J.-X., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)MathSciNetCrossRefMATH Qiu, J.-X., Shu, C.-W.: Runge–Kutta discontinuous Galerkin method using WENO limiters. SIAM J. Sci. Comput. 26, 907–929 (2005)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Sármány, D., Botchev, M., van der Vegt, J.: Dispersion and dissipation error in high-order Runge–Kutta discontinuous Galerkin discretisations of the Maxwell equations. J. Sci. Comput. 33, 47–74 (2007)MathSciNetCrossRefMATH Sármány, D., Botchev, M., van der Vegt, J.: Dispersion and dissipation error in high-order Runge–Kutta discontinuous Galerkin discretisations of the Maxwell equations. J. Sci. Comput. 33, 47–74 (2007)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Sherwin, S.: Dispersion analysis of the continuous and discontinuous Galerkin formulation. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 425–432 (2000) Sherwin, S.: Dispersion analysis of the continuous and discontinuous Galerkin formulation. Lecture Notes in Computational Science and Engineering, vol. 11, pp. 425–432 (2000)
27.
Zurück zum Zitat Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)MathSciNet Xu, Y., Shu, C.-W.: Local discontinuous Galerkin methods for high-order time-dependent partial differential equations. Commun. Comput. Phys. 7, 1–46 (2010)MathSciNet
28.
29.
Zurück zum Zitat Yang, H., Li, F., Qiu, J.-X.: Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput. 55, 552–574 (2013)MathSciNetCrossRefMATH Yang, H., Li, F., Qiu, J.-X.: Dispersion and dissipation errors of two fully discrete discontinuous Galerkin methods. J. Sci. Comput. 55, 552–574 (2013)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)MathSciNetCrossRefMATH Yang, Y., Shu, C.-W.: Analysis of optimal superconvergence of discontinuous Galerkin method for linear hyperbolic equations. SIAM J. Numer. Anal. 50, 3110–3133 (2012)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Zhong, X., Shu, C.-W.: Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Comput. Methods Appl. Mech. Eng. 200, 2814–2827 (2011)MathSciNetCrossRefMATH Zhong, X., Shu, C.-W.: Numerical resolution of discontinuous Galerkin methods for time dependent wave equations. Comput. Methods Appl. Mech. Eng. 200, 2814–2827 (2011)MathSciNetCrossRefMATH
Metadaten
Titel
A New Lax–Wendroff Discontinuous Galerkin Method with Superconvergence
verfasst von
Wei Guo
Jing-Mei Qiu
Jianxian Qiu
Publikationsdatum
01.10.2015
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2015
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-014-9968-0

Weitere Artikel der Ausgabe 1/2015

Journal of Scientific Computing 1/2015 Zur Ausgabe