Skip to main content
Erschienen in: Journal of Scientific Computing 3/2017

21.09.2016

Efficient Parallelization of a Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells

verfasst von: Matthias Sonntag, Claus-Dieter Munz

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present a shock capturing procedure for high order Discontinuous Galerkin methods, by which shock regions are refined in sub-cells and treated by finite volume techniques. Hence, our approach combines the good properties of the Discontinuous Galerkin method in smooth parts of the flow with the perfect properties of a total variation diminishing finite volume method for resolving shocks without spurious oscillations. Due to the sub-cell approach the interior resolution on the Discontinuous Galerkin grid cell is nearly preserved and the number of degrees of freedom remains the same. This structure allows the interpretation of the data either as DG solution or as finite volume solution on the subgrid. In this paper we explain the efficient implementation of this coupled method on massively parallel computers and show some numerical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Altmann, C., Taube, A., Gassner, G., Lörcher, F., Munz, C.D.: Shock detection and limiting strategies for high order discontinuous Galerkin schemes. In: Hannemann, K., Seiler, F. (eds.) Shock Waves, pp. 1053–1058. Springer, Berlin (2009)CrossRef Altmann, C., Taube, A., Gassner, G., Lörcher, F., Munz, C.D.: Shock detection and limiting strategies for high order discontinuous Galerkin schemes. In: Hannemann, K., Seiler, F. (eds.) Shock Waves, pp. 1053–1058. Springer, Berlin (2009)CrossRef
2.
Zurück zum Zitat Atak, M., Beck, A., Bolemann, T., Flad, D., Frank, H., Munz, C.D.: High Fidelity Scale-Resolving Computational Fluid Dynamics Using the High Order Discontinuous Galerkin Spectral Element Method, pp. 511–530. Springer International Publishing, Cham (2016) Atak, M., Beck, A., Bolemann, T., Flad, D., Frank, H., Munz, C.D.: High Fidelity Scale-Resolving Computational Fluid Dynamics Using the High Order Discontinuous Galerkin Spectral Element Method, pp. 511–530. Springer International Publishing, Cham (2016)
3.
Zurück zum Zitat Atak, M., Larsson, J., Munz, C.D.: The Multicore Challenge: Petascale DNS of a Spatially-Developing Supersonic Turbulent Boundary Layer Up to High Reynolds Numbers Using DGSEM. In: Resch, M.M., Bez, W., Focht, E., Kobayashi, H., Qi, J., Roller, S. (eds.) Sustained Simulation Performance 2015, pp. 171–183. Springer International Publishing, Cham (2015)CrossRef Atak, M., Larsson, J., Munz, C.D.: The Multicore Challenge: Petascale DNS of a Spatially-Developing Supersonic Turbulent Boundary Layer Up to High Reynolds Numbers Using DGSEM. In: Resch, M.M., Bez, W., Focht, E., Kobayashi, H., Qi, J., Roller, S. (eds.) Sustained Simulation Performance 2015, pp. 171–183. Springer International Publishing, Cham (2015)CrossRef
4.
Zurück zum Zitat Balsara, D.S., Altmann, C., Munz, C.D., Dumbser, M.: A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes. J. Comput. Phys. 226(1), 586–620 (2007)MathSciNetCrossRefMATH Balsara, D.S., Altmann, C., Munz, C.D., Dumbser, M.: A sub-cell based indicator for troubled zones in RKDG schemes and a novel class of hybrid RKDG+HWENO schemes. J. Comput. Phys. 226(1), 586–620 (2007)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Balsara, D.S., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with Runge–Kutta methods. J. Comput. Phys. 235, 934–969 (2013)MathSciNetCrossRefMATH Balsara, D.S., Meyer, C., Dumbser, M., Du, H., Xu, Z.: Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes—speed comparisons with Runge–Kutta methods. J. Comput. Phys. 235, 934–969 (2013)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation. Journal of Computational Physics 229(5), 1810–1827 (2010)MathSciNetCrossRefMATH Barter, G.E., Darmofal, D.L.: Shock capturing with PDE-based artificial viscosity for DGFEM: Part I. Formulation. Journal of Computational Physics 229(5), 1810–1827 (2010)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for the Euler and Navier–Stokes equations. Int. J. Numer. Methods Fluids 31, 79–95 (1999)MathSciNetCrossRefMATH Baumann, C.E., Oden, J.T.: A discontinuous hp finite element method for the Euler and Navier–Stokes equations. Int. J. Numer. Methods Fluids 31, 79–95 (1999)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Burbeau, A., Sagaut, P., Bruneau, C.H.: A problem-independent limiter for high-order Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 169(1), 111–150 (2001)MathSciNetCrossRefMATH Burbeau, A., Sagaut, P., Bruneau, C.H.: A problem-independent limiter for high-order Runge–Kutta discontinuous Galerkin methods. J. Comput. Phys. 169(1), 111–150 (2001)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetMATH Cockburn, B., Hou, S., Shu, C.W.: The Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case. Math. Comput. 54(190), 545–581 (1990)MathSciNetMATH
10.
Zurück zum Zitat Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods. Springer, Berlin (2000)CrossRefMATH Cockburn, B., Karniadakis, G.E., Shu, C.W.: Discontinuous Galerkin Methods. Springer, Berlin (2000)CrossRefMATH
11.
Zurück zum Zitat Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetCrossRefMATH Cockburn, B., Lin, S.Y., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84(1), 90–113 (1989)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATH Cockburn, B., Shu, C.W.: TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework. Math. Comput. 52(186), 411–435 (1989)MathSciNetMATH
13.
Zurück zum Zitat Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation Laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetCrossRefMATH Cockburn, B., Shu, C.W.: The Runge–Kutta discontinuous Galerkin method for conservation Laws V: multidimensional systems. J. Comput. Phys. 141(2), 199–224 (1998)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefMATH Cockburn, B., Shu, C.W.: Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. J. Sci. Comput. 16(3), 173–261 (2001)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Cockburn, B., Shu, C.W., Lin, S.: The Runge–Kutta Local Projection P1-discontinuous-Galerkin Finite Element Method for Scalar Conservation Laws. Institute for Mathematics and its Applications, Minneapolis (1989)MATH Cockburn, B., Shu, C.W., Lin, S.: The Runge–Kutta Local Projection P1-discontinuous-Galerkin Finite Element Method for Scalar Conservation Laws. Institute for Mathematics and its Applications, Minneapolis (1989)MATH
16.
Zurück zum Zitat Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928)MathSciNetCrossRefMATH Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100(1), 32–74 (1928)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-Eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)CrossRefMATH Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-Eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)CrossRefMATH
18.
Zurück zum Zitat Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)MathSciNetCrossRefMATH Dumbser, M., Zanotti, O., Loubère, R., Diot, S.: A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws. J. Comput. Phys. 278, 47–75 (2014)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012). “High Fidelity Flow Simulations” Onera Scientific DayMathSciNetCrossRef Hindenlang, F., Gassner, G.J., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012). “High Fidelity Flow Simulations” Onera Scientific DayMathSciNetCrossRef
20.
Zurück zum Zitat Huerta, A., Casoni, E., Peraire, J.: A simple shock-capturing technique for high-order discontinuous galerkin methods. Int. J. Numer. Methods Fluids 69(10), 1614–1632 (2012)MathSciNetCrossRefMATH Huerta, A., Casoni, E., Peraire, J.: A simple shock-capturing technique for high-order discontinuous galerkin methods. Int. J. Numer. Methods Fluids 69(10), 1614–1632 (2012)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes In: Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics (1981) Jameson, A., Schmidt, W., Turkel, E.: Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes In: Fluid Dynamics and Co-located Conferences. American Institute of Aeronautics and Astronautics (1981)
22.
Zurück zum Zitat Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer Science & Business Media, New York (2009)CrossRefMATH Kopriva, D.A.: Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers. Springer Science & Business Media, New York (2009)CrossRefMATH
23.
Zurück zum Zitat Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equ. 18(5), 584–608 (2002)MathSciNetCrossRefMATH Kurganov, A., Tadmor, E.: Solution of two-dimensional Riemann problems for gas dynamics without Riemann problem solvers. Numer. Methods Partial Differ. Equ. 18(5), 584–608 (2002)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Lasaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–123. Academic Press (1974) Lasaint, P., Raviart, P.A.: On a finite element method for solving the neutron transport equation. In: de Boor, C. (ed.) Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–123. Academic Press (1974)
25.
Zurück zum Zitat LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)CrossRefMATH LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, vol. 31. Cambridge University Press, Cambridge (2002)CrossRefMATH
26.
Zurück zum Zitat Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. 36(1), 9–15 (1971)CrossRefMATH Nitsche, J.: Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. Abh. Math. Semin. Univ. Hambg. 36(1), 9–15 (1971)CrossRefMATH
27.
Zurück zum Zitat Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006) Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: Proceedings of the 44th AIAA Aerospace Sciences Meeting and Exhibit. American Institute of Aeronautics and Astronautics (2006)
28.
Zurück zum Zitat Premasuthan, S., Liang, C., Jameson, A.: Computation of flows with shocks using the spectral difference method with artificial viscosity, I: basic formulation and application. Comput. Fluids 98, 111–121 (2014)MathSciNetCrossRef Premasuthan, S., Liang, C., Jameson, A.: Computation of flows with shocks using the spectral difference method with artificial viscosity, I: basic formulation and application. Comput. Fluids 98, 111–121 (2014)MathSciNetCrossRef
29.
Zurück zum Zitat Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for runge-kutta discontinuous galerkin method: one-dimensional case. J. Comput. Phys. 193(1), 115–135 (2004)MathSciNetCrossRefMATH Qiu, J., Shu, C.W.: Hermite WENO schemes and their application as limiters for runge-kutta discontinuous galerkin method: one-dimensional case. J. Comput. Phys. 193(1), 115–135 (2004)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Rault, A., Chiavassa, G., Donat, R.: Shock–Vortex interactions at high mach numbers. J. Sci. Comput. 19(1–3), 347–371 (2003)MathSciNetCrossRefMATH Rault, A., Chiavassa, G., Donat, R.: Shock–Vortex interactions at high mach numbers. J. Sci. Comput. 19(1–3), 347–371 (2003)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR–73-479, Los Alamos Scientific Laboratory (1973) Reed, W., Hill, T.: Triangular mesh methods for the neutron transport equation. Tech. Rep. LA-UR–73-479, Los Alamos Scientific Laboratory (1973)
33.
Zurück zum Zitat Roe, P.L.: Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J. Comput. Phys. 63(2), 458–476 (1986)MathSciNetCrossRefMATH Roe, P.L.: Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics. J. Comput. Phys. 63(2), 458–476 (1986)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Sabat, M., Larat, A., Vié, A., Massot, M.: Comparison of realizable schemes for the Eulerian simulation of disperse phase flows. In: J. Fuhrmann, M. Ohlberger, C. Rohde (eds.) Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Springer Proceedings in Mathematics & Statistics, vol. 78, pp. 935–943. Springer International Publishing (2014) Sabat, M., Larat, A., Vié, A., Massot, M.: Comparison of realizable schemes for the Eulerian simulation of disperse phase flows. In: J. Fuhrmann, M. Ohlberger, C. Rohde (eds.) Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Springer Proceedings in Mathematics & Statistics, vol. 78, pp. 935–943. Springer International Publishing (2014)
35.
Zurück zum Zitat Schulz-Rinne, C.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24(1), 76–88 (1993)MathSciNetCrossRefMATH Schulz-Rinne, C.: Classification of the Riemann problem for two-dimensional gas dynamics. SIAM J. Math. Anal. 24(1), 76–88 (1993)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 83(1), 32–78 (1989)MathSciNetCrossRefMATH Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 83(1), 32–78 (1989)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)MathSciNetCrossRefMATH Sweby, P.K.: High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21(5), 995–1011 (1984)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media, New York (1999)CrossRefMATH Toro, E.F.: Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. Springer Science & Business Media, New York (1999)CrossRefMATH
39.
Zurück zum Zitat Toro, E.F., Clarke, J.F.: Numerical Methods for Wave Propagation. Springer Publishing Company Incorporated, New York (2011) Toro, E.F., Clarke, J.F.: Numerical Methods for Wave Propagation. Springer Publishing Company Incorporated, New York (2011)
40.
Zurück zum Zitat van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)CrossRefMATH van Leer, B.: Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. J. Comput. Phys. 14(4), 361–370 (1974)CrossRefMATH
41.
Zurück zum Zitat VonNeumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)MathSciNetCrossRefMATH VonNeumann, J., Richtmyer, R.D.: A method for the numerical calculation of hydrodynamic shocks. J. Appl. Phys. 21(3), 232–237 (1950)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)MathSciNetCrossRefMATH Woodward, P., Colella, P.: The numerical simulation of two-dimensional fluid flow with strong shocks. J. Comput. Phys. 54(1), 115–173 (1984)MathSciNetCrossRefMATH
Metadaten
Titel
Efficient Parallelization of a Shock Capturing for Discontinuous Galerkin Methods using Finite Volume Sub-cells
verfasst von
Matthias Sonntag
Claus-Dieter Munz
Publikationsdatum
21.09.2016
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-016-0287-5

Weitere Artikel der Ausgabe 3/2017

Journal of Scientific Computing 3/2017 Zur Ausgabe