Skip to main content
Erschienen in: Journal of Scientific Computing 3/2017

17.02.2017

Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation

verfasst von: Xian-Ming Gu, Ting-Zhu Huang, Cui-Cui Ji, Bruno Carpentieri, Anatoly A. Alikhanov

Erschienen in: Journal of Scientific Computing | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we intend to establish fast numerical approaches to solve a class of initial-boundary problem of time-space fractional convection–diffusion equations. We present a new unconditionally stable implicit difference method, which is derived from the weighted and shifted Grünwald formula, and converges with the second-order accuracy in both time and space variables. Then, we show that the discretizations lead to Toeplitz-like systems of linear equations that can be efficiently solved by Krylov subspace solvers with suitable circulant preconditioners. Each time level of these methods reduces the memory requirement of the proposed implicit difference scheme from \({\mathcal {O}}(N^2)\) to \({\mathcal {O}}(N)\) and the computational complexity from \({\mathcal {O}}(N^3)\) to \({\mathcal {O}}(N\log N)\) in each iterative step, where N is the number of grid nodes. Extensive numerical examples are reported to support our theoretical findings and show the utility of these methods over traditional direct solvers of the implicit difference method, in terms of computational cost and memory requirements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
In this case, it should mention that we only need to solve three nonsymmetric Toeplitz systems, i.e., equations with the form like (3.5) and in Step 4 of Algorithm 3, for implementing the whole for loop.
 
2
For the sake of clarity, here we do not list the number of iterations required for solving those three linear systems one by one.
 
Literatur
1.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations, vol. 198 of Mathematics in Science. Academic Press Inc., San Diego (1999) Podlubny, I.: Fractional Differential Equations, vol. 198 of Mathematics in Science. Academic Press Inc., San Diego (1999)
2.
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdonn (1993)MATH Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science Publishers, Yverdonn (1993)MATH
3.
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)MATH
4.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Povstenko, Y.: Space-time-fractional advection diffusion equation in a plane. In: Latawiec, K.J., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-Integer-Order Systems. Volume 320 of the Series Lecture Notes in Electrical Engineering, pp. 275–284. Springer, New York (2015) Povstenko, Y.: Space-time-fractional advection diffusion equation in a plane. In: Latawiec, K.J., Łukaniszyn, M., Stanisławski, R. (eds.) Advances in Modelling and Control of Non-Integer-Order Systems. Volume 320 of the Series Lecture Notes in Electrical Engineering, pp. 275–284. Springer, New York (2015)
7.
Zurück zum Zitat Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)CrossRef Benson, D.A., Wheatcraft, S.W., Meerschaert, M.M.: Application of a fractional advection–dispersion equation. Water Resour. Res. 36, 1403–1412 (2000)CrossRef
8.
Zurück zum Zitat Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection–diffusion equations. Adv. Water Resour. 34, 810–816 (2011)CrossRef Wang, K., Wang, H.: A fast characteristic finite difference method for fractional advection–diffusion equations. Adv. Water Resour. 34, 810–816 (2011)CrossRef
9.
Zurück zum Zitat Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448–479 (2010)MathSciNetMATH Dehghan, M., Manafian, J., Saadatmandi, A.: Solving nonlinear fractional partial differential equations using the homotopy analysis method. Numer. Methods Partial Differ. Equ. 26, 448–479 (2010)MathSciNetMATH
11.
Zurück zum Zitat Saadatmandi, A., Dehghan, M., Azizi, M.-R.: The Sinc–Legendre collocation method for a class of fractional convection–diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17, 4125–4136 (2012)MathSciNetCrossRefMATH Saadatmandi, A., Dehghan, M., Azizi, M.-R.: The Sinc–Legendre collocation method for a class of fractional convection–diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17, 4125–4136 (2012)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method. J. Comput. Appl. Math. 280, 14–36 (2015)MathSciNetCrossRefMATH Dehghan, M., Abbaszadeh, M., Mohebbi, A.: Error estimate for the numerical solution of fractional reaction-subdiffusion process based on a meshless method. J. Comput. Appl. Math. 280, 14–36 (2015)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Luo, W.-H., Huang, T.-Z., Wu, G.-C., Gu, X.-M.: Quadratic spline collocation method for the time fractional subdiffusion equation. Appl. Math. Comput. 276, 252–265 (2016)MathSciNet Luo, W.-H., Huang, T.-Z., Wu, G.-C., Gu, X.-M.: Quadratic spline collocation method for the time fractional subdiffusion equation. Appl. Math. Comput. 276, 252–265 (2016)MathSciNet
14.
Zurück zum Zitat Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)MathSciNetCrossRefMATH Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)MathSciNetCrossRefMATH Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J. Comput. Phys. 240, 36–48 (2013)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Gu, X.-M., Huang, T.-Z., Zhao, X.-L., Li, H.-B., Li, L.: Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. J. Comput. Appl. Math. 277, 73–86 (2015)MathSciNetCrossRefMATH Gu, X.-M., Huang, T.-Z., Zhao, X.-L., Li, H.-B., Li, L.: Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. J. Comput. Appl. Math. 277, 73–86 (2015)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection–dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Su, L., Wang, W., Xu, Q.: Finite difference methods for fractional dispersion equations. Appl. Math. Comput. 216, 3329–3334 (2010)MathSciNetMATH Su, L., Wang, W., Xu, Q.: Finite difference methods for fractional dispersion equations. Appl. Math. Comput. 216, 3329–3334 (2010)MathSciNetMATH
19.
Zurück zum Zitat Su, L., Wang, W., Yang, Z.: Finite difference approximations for the fractional advection–diffusion equation. Phys. Lett. A 373, 4405–4408 (2009)CrossRefMATH Su, L., Wang, W., Yang, Z.: Finite difference approximations for the fractional advection–diffusion equation. Phys. Lett. A 373, 4405–4408 (2009)CrossRefMATH
20.
Zurück zum Zitat Sousa, E.: Finite difference approximations for a fractional advection–diffusion problem. J. Comput. Phys. 228, 4038–4054 (2009)MathSciNetCrossRefMATH Sousa, E.: Finite difference approximations for a fractional advection–diffusion problem. J. Comput. Phys. 228, 4038–4054 (2009)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Su, L., Wang, W., Wang, H.: A characteristic difference method for the transient fractional convection–diffusion equations. Appl. Numer. Math. 61, 946–960 (2011)MathSciNetCrossRefMATH Su, L., Wang, W., Wang, H.: A characteristic difference method for the transient fractional convection–diffusion equations. Appl. Numer. Math. 61, 946–960 (2011)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Deng, Z., Singh, V., Bengtsson, L.: Numerical solution of fractional advection–dispersion equation. J. Hydraul. Eng. 130, 422–431 (2004)CrossRef Deng, Z., Singh, V., Bengtsson, L.: Numerical solution of fractional advection–dispersion equation. J. Hydraul. Eng. 130, 422–431 (2004)CrossRef
23.
Zurück zum Zitat Ding, Z., Xiao, A., Li, M.: Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients. J. Comput. Appl. Math. 233, 1905–1914 (2010)MathSciNetCrossRefMATH Ding, Z., Xiao, A., Li, M.: Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients. J. Comput. Appl. Math. 233, 1905–1914 (2010)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)MathSciNetCrossRefMATH Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection–dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Chen, M., Deng, W.: A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation. Appl. Math. Model. 38, 3244–3259 (2014)MathSciNetCrossRef Chen, M., Deng, W.: A second-order numerical method for two-dimensional two-sided space fractional convection diffusion equation. Appl. Math. Model. 38, 3244–3259 (2014)MathSciNetCrossRef
27.
Zurück zum Zitat Deng, W., Chen, M.: Efficient numerical algorithms for three-dimensional fractional partial differential equations. J. Comput. Math. 32, 371–391 (2014)MathSciNetCrossRefMATH Deng, W., Chen, M.: Efficient numerical algorithms for three-dimensional fractional partial differential equations. J. Comput. Math. 32, 371–391 (2014)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Qu, W., Lei, S.-L., Vong, S.-W.: Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations. Int. J. Comput. Math. 91, 2232–2242 (2014)MathSciNetCrossRefMATH Qu, W., Lei, S.-L., Vong, S.-W.: Circulant and skew-circulant splitting iteration for fractional advection–diffusion equations. Int. J. Comput. Math. 91, 2232–2242 (2014)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Ford, N.J., Pal, K., Yan, Y.: An algorithm for the numerical solution of two-sided space-fractional partial differential equations. Comput. Methods Appl. Math. 15, 497–514 (2015)MathSciNetMATH Ford, N.J., Pal, K., Yan, Y.: An algorithm for the numerical solution of two-sided space-fractional partial differential equations. Comput. Methods Appl. Math. 15, 497–514 (2015)MathSciNetMATH
30.
Zurück zum Zitat Bhrawy, A.H., Baleanu, D.: A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection–diffusion equations with variable coefficients. Rep. Math. Phys. 72, 219–233 (2013)MathSciNetCrossRefMATH Bhrawy, A.H., Baleanu, D.: A spectral Legendre–Gauss–Lobatto collocation method for a space-fractional advection–diffusion equations with variable coefficients. Rep. Math. Phys. 72, 219–233 (2013)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)MathSciNetCrossRefMATH Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Hejazi, H., Moroney, T., Liu, F.: Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. J. Comput. Appl. Math. 255, 684–697 (2014)MathSciNetCrossRefMATH Hejazi, H., Moroney, T., Liu, F.: Stability and convergence of a finite volume method for the space fractional advection–dispersion equation. J. Comput. Appl. Math. 255, 684–697 (2014)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Tian, W.Y., Deng, W., Wu, Y.: Polynomial spectral collocation method for space fractional advection–diffusion equation. Numer. Methods Partial Differ. Equ. 30, 514–535 (2014)MathSciNetCrossRefMATH Tian, W.Y., Deng, W., Wu, Y.: Polynomial spectral collocation method for space fractional advection–diffusion equation. Numer. Methods Partial Differ. Equ. 30, 514–535 (2014)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefMATH Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model. Comput. Math. Appl. 66, 693–701 (2013)MathSciNetCrossRefMATH Zhang, H., Liu, F., Phanikumar, M.S., Meerschaert, M.M.: A novel numerical method for the time variable fractional order mobile–immobile advection–dispersion model. Comput. Math. Appl. 66, 693–701 (2013)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Cui, M.: A high-order compact exponential scheme for the fractional convection–diffusion equation. J. Comput. Appl. Math. 255, 404–416 (2014)MathSciNetCrossRefMATH Cui, M.: A high-order compact exponential scheme for the fractional convection–diffusion equation. J. Comput. Appl. Math. 255, 404–416 (2014)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Cui, M.: Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)MathSciNetCrossRefMATH Cui, M.: Compact exponential scheme for the time fractional convection–diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Mohebbi, A., Abbaszadeh, M.: Compact finite difference scheme for the solution of time fractional advection–dispersion equation. Numer. Algorithms 63, 431–452 (2013)MathSciNetCrossRefMATH Mohebbi, A., Abbaszadeh, M.: Compact finite difference scheme for the solution of time fractional advection–dispersion equation. Numer. Algorithms 63, 431–452 (2013)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Momani, S.: An algorithm for solving the fractional convection–diffusion equation with nonlinear source term. Commun. Nonlinear Sci. Numer. Simul. 12, 1283–1290 (2007)MathSciNetCrossRefMATH Momani, S.: An algorithm for solving the fractional convection–diffusion equation with nonlinear source term. Commun. Nonlinear Sci. Numer. Simul. 12, 1283–1290 (2007)MathSciNetCrossRefMATH
40.
Zurück zum Zitat Wang, Z., Vong, S.: A high-order exponential ADI scheme for two dimensional time fractional convection–diffusion equations. Comput. Math. Appl. 68, 185–196 (2014)MathSciNetCrossRef Wang, Z., Vong, S.: A high-order exponential ADI scheme for two dimensional time fractional convection–diffusion equations. Comput. Math. Appl. 68, 185–196 (2014)MathSciNetCrossRef
41.
Zurück zum Zitat Fu, Z.-J., Chen, W., Yang, H.-T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)MathSciNetCrossRefMATH Fu, Z.-J., Chen, W., Yang, H.-T.: Boundary particle method for Laplace transformed time fractional diffusion equations. J. Comput. Phys. 235, 52–66 (2013)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation. J. Comput. Phys. 269, 138–155 (2014)MathSciNetCrossRefMATH Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation. J. Comput. Phys. 269, 138–155 (2014)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Zhuang, P., Gu, Y.T., Liu, F., Turner, I., Yarlagadda, P.K.D.V.: Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method. Int. J. Numer. Methods Eng. 88, 1346–1362 (2011)MathSciNetCrossRefMATH Zhuang, P., Gu, Y.T., Liu, F., Turner, I., Yarlagadda, P.K.D.V.: Time-dependent fractional advection–diffusion equations by an implicit MLS meshless method. Int. J. Numer. Methods Eng. 88, 1346–1362 (2011)MathSciNetCrossRefMATH
44.
Zurück zum Zitat Wang, Y.-M.: A compact finite difference method for solving a class of time fractional convection–subdiffusion equations. BIT Numer. Math. 55, 1187–1217 (2015)MathSciNetCrossRefMATH Wang, Y.-M.: A compact finite difference method for solving a class of time fractional convection–subdiffusion equations. BIT Numer. Math. 55, 1187–1217 (2015)MathSciNetCrossRefMATH
45.
Zurück zum Zitat Zhang, Y.: A finite difference method for fractional partial differential equation. Appl. Math. Comput. 215, 524–529 (2009)MathSciNetMATH Zhang, Y.: A finite difference method for fractional partial differential equation. Appl. Math. Comput. 215, 524–529 (2009)MathSciNetMATH
46.
Zurück zum Zitat Zhang, Y.: Finite difference approximations for space-time fractional partial differential equation. J. Numer. Math. 17, 319–326 (2009)MathSciNetCrossRefMATH Zhang, Y.: Finite difference approximations for space-time fractional partial differential equation. J. Numer. Math. 17, 319–326 (2009)MathSciNetCrossRefMATH
47.
Zurück zum Zitat Shao, Y., Ma, W.: Finite difference approximations for the two-side space-time fractional advection–diffusion equations. J. Comput. Anal. Appl. 21, 369–379 (2016)MathSciNetMATH Shao, Y., Ma, W.: Finite difference approximations for the two-side space-time fractional advection–diffusion equations. J. Comput. Anal. Appl. 21, 369–379 (2016)MathSciNetMATH
48.
Zurück zum Zitat Qin, P., Zhang, X.: A numerical method for the space-time fractional convection–diffusion equation. Math. Numer. Sin. 30, 305–310 (2008). (in Chinese)MathSciNetMATH Qin, P., Zhang, X.: A numerical method for the space-time fractional convection–diffusion equation. Math. Numer. Sin. 30, 305–310 (2008). (in Chinese)MathSciNetMATH
49.
Zurück zum Zitat Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection–diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)MathSciNetMATH Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection–diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)MathSciNetMATH
50.
Zurück zum Zitat Zhao, Z., Jin, X.-Q., Lin, M.M.: Preconditioned iterative methods for space-time fractional advection–diffusion equations. J. Comput. Phys. 319, 266–279 (2016)MathSciNetCrossRefMATH Zhao, Z., Jin, X.-Q., Lin, M.M.: Preconditioned iterative methods for space-time fractional advection–diffusion equations. J. Comput. Phys. 319, 266–279 (2016)MathSciNetCrossRefMATH
51.
Zurück zum Zitat Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection–diffusion equation. Numer. Algorithms 56, 383–403 (2011)MathSciNetCrossRefMATH Shen, S., Liu, F., Anh, V.: Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection–diffusion equation. Numer. Algorithms 56, 383–403 (2011)MathSciNetCrossRefMATH
52.
Zurück zum Zitat Parvizi, M., Eslahchi, M.R., Dehghan, M.: Numerical solution of fractional advection–diffusion equation with a nonlinear source term. Numer. Algorithms 68, 601–629 (2015)MathSciNetCrossRefMATH Parvizi, M., Eslahchi, M.R., Dehghan, M.: Numerical solution of fractional advection–diffusion equation with a nonlinear source term. Numer. Algorithms 68, 601–629 (2015)MathSciNetCrossRefMATH
53.
Zurück zum Zitat Chen, Y., Wu, Y., Cui, Y., Wang, Z., Jin, D.: Wavelet method for a class of fractional convection–diffusion equation with variable coefficients. J. Comput. Sci. 1, 146–149 (2010)CrossRef Chen, Y., Wu, Y., Cui, Y., Wang, Z., Jin, D.: Wavelet method for a class of fractional convection–diffusion equation with variable coefficients. J. Comput. Sci. 1, 146–149 (2010)CrossRef
54.
Zurück zum Zitat Irandoust-pakchin, S., Dehghan, M., Abdi-mazraeh, S., Lakestani, M.: Numerical solution for a class of fractional convection–diffusion equations using the flatlet oblique multiwavelets. J. Vib. Control 20, 913–924 (2014)MathSciNetCrossRef Irandoust-pakchin, S., Dehghan, M., Abdi-mazraeh, S., Lakestani, M.: Numerical solution for a class of fractional convection–diffusion equations using the flatlet oblique multiwavelets. J. Vib. Control 20, 913–924 (2014)MathSciNetCrossRef
55.
Zurück zum Zitat Bhrawy, A.H., Zaky, M.A., Tenreiro-Machado, M.A.: Efficient Legendre spectral tau algorithm for solving the two-sided space-time Caputo fractional advection–dispersion equation. J. Vib. Control 22, 2053–2068 (2016)MathSciNetCrossRefMATH Bhrawy, A.H., Zaky, M.A., Tenreiro-Machado, M.A.: Efficient Legendre spectral tau algorithm for solving the two-sided space-time Caputo fractional advection–dispersion equation. J. Vib. Control 22, 2053–2068 (2016)MathSciNetCrossRefMATH
56.
Zurück zum Zitat Hejazi, H., Moroney, T., Liu, F.: A finite volume method for solving the two-sided time-space fractional advection–dispersion equation. Cent. Eur. J. Phys. 11, 1275–1283 (2013) Hejazi, H., Moroney, T., Liu, F.: A finite volume method for solving the two-sided time-space fractional advection–dispersion equation. Cent. Eur. J. Phys. 11, 1275–1283 (2013)
57.
Zurück zum Zitat Jiang, W., Lin, Y.: Approximate solution of the fractional advection–dispersion equation. Comput. Phys. Commun. 181, 557–561 (2010)MathSciNetCrossRefMATH Jiang, W., Lin, Y.: Approximate solution of the fractional advection–dispersion equation. Comput. Phys. Commun. 181, 557–561 (2010)MathSciNetCrossRefMATH
58.
Zurück zum Zitat Wei, J., Chen, Y., Li, B., Yi, M.: Numerical solution of space-time fractional convection–diffusion equations with variable coefficients using Haar wavelets. Comput. Model. Eng. Sci. (CMES) 89, 481–495 (2012)MATH Wei, J., Chen, Y., Li, B., Yi, M.: Numerical solution of space-time fractional convection–diffusion equations with variable coefficients using Haar wavelets. Comput. Model. Eng. Sci. (CMES) 89, 481–495 (2012)MATH
59.
Zurück zum Zitat Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)MATH Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, New York (2004)MATH
60.
Zurück zum Zitat Lin, F.-R., Yang, S.-W., Jin, X.-Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRefMATH Lin, F.-R., Yang, S.-W., Jin, X.-Q.: Preconditioned iterative methods for fractional diffusion equation. J. Comput. Phys. 256, 109–117 (2014)MathSciNetCrossRefMATH
61.
Zurück zum Zitat Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)MathSciNetCrossRefMATH Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)MathSciNetCrossRefMATH
62.
Zurück zum Zitat Gohberg, I., Semencul, A.: On the inversion of finite Toeplitz matrices and their continuous analogues. Matem. Issled. 7, 201–223 (1972). (in Russian)MATH Gohberg, I., Semencul, A.: On the inversion of finite Toeplitz matrices and their continuous analogues. Matem. Issled. 7, 201–223 (1972). (in Russian)MATH
63.
Zurück zum Zitat Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)CrossRefMATH Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia (2003)CrossRefMATH
64.
65.
Zurück zum Zitat Hao, Z.-P., Sun, Z.-Z., Cao, W.-R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)MathSciNetCrossRefMATH Hao, Z.-P., Sun, Z.-Z., Cao, W.-R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)MathSciNetCrossRefMATH
66.
Zurück zum Zitat Vong, S., Lyu, P., Chen, X., Lei, S.-L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)MathSciNetCrossRefMATH Vong, S., Lyu, P., Chen, X., Lei, S.-L.: High order finite difference method for time-space fractional differential equations with Caputo and Riemann–Liouville derivatives. Numer. Algorithms 72, 195–210 (2016)MathSciNetCrossRefMATH
67.
Zurück zum Zitat Björck, Å.: Numerical Methods in Matrix Computations, volume 59 of the series Texts in Applied Mathematics. Springer, Switzerland (2014) Björck, Å.: Numerical Methods in Matrix Computations, volume 59 of the series Texts in Applied Mathematics. Springer, Switzerland (2014)
68.
Zurück zum Zitat Jia, J., Wang, H.: Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. J. Comput. Phys. 293, 359–369 (2015)MathSciNetCrossRefMATH Jia, J., Wang, H.: Fast finite difference methods for space-fractional diffusion equations with fractional derivative boundary conditions. J. Comput. Phys. 293, 359–369 (2015)MathSciNetCrossRefMATH
69.
Zurück zum Zitat Gu, X.-M., Huang, T.-Z., Li, H.-B., Li, L., Luo, W.-H.: On \(k\)-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations. Appl. Math. Lett. 42, 53–58 (2015)MathSciNetCrossRefMATH Gu, X.-M., Huang, T.-Z., Li, H.-B., Li, L., Luo, W.-H.: On \(k\)-step CSCS-based polynomial preconditioners for Toeplitz linear systems with application to fractional diffusion equations. Appl. Math. Lett. 42, 53–58 (2015)MathSciNetCrossRefMATH
Metadaten
Titel
Fast Iterative Method with a Second-Order Implicit Difference Scheme for Time-Space Fractional Convection–Diffusion Equation
verfasst von
Xian-Ming Gu
Ting-Zhu Huang
Cui-Cui Ji
Bruno Carpentieri
Anatoly A. Alikhanov
Publikationsdatum
17.02.2017
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 3/2017
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0388-9

Weitere Artikel der Ausgabe 3/2017

Journal of Scientific Computing 3/2017 Zur Ausgabe