Skip to main content
Erschienen in: Journal of Scientific Computing 1/2019

17.09.2018

The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for the Time Multi-term Fractional Wave Equation

verfasst von: Hong Sun, Xuan Zhao, Zhi-zhong Sun

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, two temporal second-order schemes are derived and analyzed for the time multi-term fractional diffusion-wave equation based on the order reduction technique. The weighted average at two time levels is applied to the discretization of the spatial derivative, in which the weight coefficient corresponds to the optimal point for the time discretization. The two difference schemes are proved to be uniquely solvable. The stability and convergence are rigorously investigated utilizing the energy method. In addition, a fast difference scheme is also presented. The applicability and the accuracy of the schemes are demonstrated by several numerical experiments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math. Gen. 30, 7277–7289 (1997)MathSciNetCrossRefMATH Compte, A., Metzler, R.: The generalized Cattaneo equation for the description of anomalous transport processes. J. Phys. A Math. Gen. 30, 7277–7289 (1997)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Godoy, S., Garcia-Colin, L.S.: From the quantum random walk to classical mesoscopic diffusion in crystalline solids. Phys. Rev. E 53, 5779–5785 (1996)CrossRef Godoy, S., Garcia-Colin, L.S.: From the quantum random walk to classical mesoscopic diffusion in crystalline solids. Phys. Rev. E 53, 5779–5785 (1996)CrossRef
3.
Zurück zum Zitat Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)MathSciNetCrossRefMATH Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)MathSciNetCrossRefMATH
4.
Zurück zum Zitat Povstenko, Y.Z.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stress. 34, 97–114 (2011)CrossRef Povstenko, Y.Z.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stress. 34, 97–114 (2011)CrossRef
6.
Zurück zum Zitat Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)CrossRef Sun, H.G., Chen, W., Chen, Y.Q.: Variable-order fractional differential operators in anomalous diffusion modeling. Phys. A 388, 4586–4592 (2009)CrossRef
7.
Zurück zum Zitat Sun, H.G., Zhang, Y., Chen, W., Reeves, D.M.: Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47–58 (2014)CrossRef Sun, H.G., Zhang, Y., Chen, W., Reeves, D.M.: Use of a variable-index fractional-derivative model to capture transient dispersion in heterogeneous media. J. Contam. Hydrol. 157, 47–58 (2014)CrossRef
8.
Zurück zum Zitat Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374, 538–548 (2011)MathSciNetCrossRefMATH Luchko, Y.: Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 374, 538–548 (2011)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Shiralashetti, S.C., Deshi, A.B.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83, 293–303 (2016)MathSciNetCrossRef Shiralashetti, S.C., Deshi, A.B.: An efficient Haar wavelet collocation method for the numerical solution of multi-term fractional differential equations. Nonlinear Dyn. 83, 293–303 (2016)MathSciNetCrossRef
10.
Zurück zum Zitat Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)MathSciNetCrossRefMATH Srivastava, V., Rai, K.N.: A multi-term fractional diffusion equation for oxygen delivery through a capillary to tissues. Math. Comput. Model. 51, 616–624 (2010)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)MathSciNetCrossRefMATH Jin, B., Lazarov, R., Liu, Y., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825–843 (2015)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)MathSciNetCrossRefMATH Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 9–25 (2013)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M.: Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition. Appl. Numer. Math. 109, 208–234 (2016)MathSciNetCrossRefMATH Dehghan, M., Abbaszadeh, M.: Analysis of the element free Galerkin (EFG) method for solving fractional cable equation with Dirichlet boundary condition. Appl. Numer. Math. 109, 208–234 (2016)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algorithm 75, 173–211 (2017)MathSciNetCrossRefMATH Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algorithm 75, 173–211 (2017)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M.: Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition. Comput. Math. Appl. 73, 1270–1285 (2017)MathSciNetCrossRef Dehghan, M., Abbaszadeh, M.: Element free Galerkin approach based on the reproducing kernel particle method for solving 2D fractional Tricomi-type equation with Robin boundary condition. Comput. Math. Appl. 73, 1270–1285 (2017)MathSciNetCrossRef
16.
Zurück zum Zitat Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)MATH Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, San Diego (1974)MATH
17.
18.
Zurück zum Zitat Du, R., Cao, W., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3009 (2010)MathSciNetCrossRefMATH Du, R., Cao, W., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3009 (2010)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)MathSciNetCrossRefMATH Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact alternating direction implicit schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Zhao, X., Sun, Z.Z.: Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)MathSciNetCrossRefMATH Zhao, X., Sun, Z.Z.: Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 747–771 (2015)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRefMATH Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Part. Differ. Equ. 32, 970–1001 (2016)MathSciNetCrossRefMATH Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Part. Differ. Equ. 32, 970–1001 (2016)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Dehghan, M., Abbaszadeh, M., Deng, W.H.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017)MathSciNetCrossRefMATH Dehghan, M., Abbaszadeh, M., Deng, W.H.: Fourth-order numerical method for the space-time tempered fractional diffusion-wave equation. Appl. Math. Lett. 73, 120–127 (2017)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Ghazizadeh, H.R., Maerefat, M., Azimi, A.: Explicit and implicitt finite difference schemes for fractional Cattaneo equation. J. Comput. Phys. 229, 7042–7057 (2010)MathSciNetCrossRefMATH Ghazizadeh, H.R., Maerefat, M., Azimi, A.: Explicit and implicitt finite difference schemes for fractional Cattaneo equation. J. Comput. Phys. 229, 7042–7057 (2010)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Li, C.P., Cao, J.X.: A finite difference method for time-fractional telegraph equation. In: 2012 IEEE/ASME International Conference, pp. 314–318 (2012) Li, C.P., Cao, J.X.: A finite difference method for time-fractional telegraph equation. In: 2012 IEEE/ASME International Conference, pp. 314–318 (2012)
26.
Zurück zum Zitat Vong, S.W., Pang, H.K., Jin, X.Q.: A high-order difference scheme for the generalized Cattaneo equation. East Asian J. Appl. Math. 2, 170–184 (2012)MathSciNetCrossRefMATH Vong, S.W., Pang, H.K., Jin, X.Q.: A high-order difference scheme for the generalized Cattaneo equation. East Asian J. Appl. Math. 2, 170–184 (2012)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Zhou, J., Xu, D., Chen, H.B.: A weak Galerkin finite element method for multi-term time-fractional diffusion equations. East Asian J. Appl. Math. 8, 181–193 (2018)MathSciNet Zhou, J., Xu, D., Chen, H.B.: A weak Galerkin finite element method for multi-term time-fractional diffusion equations. East Asian J. Appl. Math. 8, 181–193 (2018)MathSciNet
28.
Zurück zum Zitat Li, G.S., Sun, C.L., Jia, X.Z., Du, D.H.: Numerical solution to the multi-term time fractional diffusion equation in a finite domain. Numer. Math. Theor. Meth. Appl. 9, 337–357 (2016)MathSciNetCrossRefMATH Li, G.S., Sun, C.L., Jia, X.Z., Du, D.H.: Numerical solution to the multi-term time fractional diffusion equation in a finite domain. Numer. Math. Theor. Meth. Appl. 9, 337–357 (2016)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Zheng, M., Liu, F., Anh, V., Turner, I.: A high-order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Model. 40, 4970–4985 (2016)MathSciNetCrossRef Zheng, M., Liu, F., Anh, V., Turner, I.: A high-order spectral method for the multi-term time-fractional diffusion equations. Appl. Math. Model. 40, 4970–4985 (2016)MathSciNetCrossRef
30.
Zurück zum Zitat Salehi, R.: A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation. Numer. Algorithm 74, 1145–1168 (2017)MathSciNetCrossRefMATH Salehi, R.: A meshless point collocation method for 2-D multi-term time fractional diffusion-wave equation. Numer. Algorithm 74, 1145–1168 (2017)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Abdel-Rehim, E.A., El-Sayed, A.M.A., Hashem, A.S.: Simulation of the approximate solutions of the time-fractional multi-term wave equations. Comput. Math. Appl. 73, 1134–1154 (2017)MathSciNetCrossRef Abdel-Rehim, E.A., El-Sayed, A.M.A., Hashem, A.S.: Simulation of the approximate solutions of the time-fractional multi-term wave equations. Comput. Math. Appl. 73, 1134–1154 (2017)MathSciNetCrossRef
32.
Zurück zum Zitat Liu, Y.: Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem. Comput. Math. Appl. 73, 96–108 (2017)MathSciNetCrossRefMATH Liu, Y.: Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem. Comput. Math. Appl. 73, 96–108 (2017)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)MathSciNetCrossRefMATH Bhrawy, A.H., Zaky, M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)MathSciNetCrossRefMATH
34.
Zurück zum Zitat Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)MathSciNetCrossRefMATH Dehghan, M., Safarpoor, M., Abbaszadeh, M.: Two high-order numerical algorithms for solving the multi-term time fractional diffusion-wave equations. J. Comput. Appl. Math. 290, 174–195 (2015)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Ren, J.C., Sun, Z.Z.: Efficient Numerical solution of the multi-term time fractional diffusion-dave equation. East Asian J. Appl. Math. 5, 1–28 (2015)MathSciNetCrossRefMATH Ren, J.C., Sun, Z.Z.: Efficient Numerical solution of the multi-term time fractional diffusion-dave equation. East Asian J. Appl. Math. 5, 1–28 (2015)MathSciNetCrossRefMATH
36.
Zurück zum Zitat Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 1–17 (2013)MathSciNetCrossRefMATH Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time-fractional wave-diffusion equation. Fract. Calc. Appl. Anal. 16, 1–17 (2013)MathSciNetCrossRefMATH
37.
Zurück zum Zitat Brunner, H., Han, H., Yin, D.: Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain. J. Comput. Phys. 276, 541–562 (2014)MathSciNetCrossRefMATH Brunner, H., Han, H., Yin, D.: Artificial boundary conditions and finite difference approximations for a time-fractional diffusion-wave equation on a two-dimensional unbounded spatial domain. J. Comput. Phys. 276, 541–562 (2014)MathSciNetCrossRefMATH
38.
Zurück zum Zitat Gao, G.H., Alikhanov, A.A., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 73, 93–121 (2017)MathSciNetCrossRefMATH Gao, G.H., Alikhanov, A.A., Sun, Z.Z.: The temporal second order difference schemes based on the interpolation approximation for solving the time multi-term and distributed-order fractional sub-diffusion equations. J. Sci. Comput. 73, 93–121 (2017)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetCrossRef Jiang, S.D., Zhang, J.W., Zhang, Q., Zhang, Z.M.: Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations. Commun. Comput. Phys. 21, 650–678 (2017)MathSciNetCrossRef
40.
Zurück zum Zitat Yan, Y.G., Sun, Z.Z., Zhang, J.W.: Fast evalution of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)MathSciNetCrossRef Yan, Y.G., Sun, Z.Z., Zhang, J.W.: Fast evalution of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme. Commun. Comput. Phys. 22, 1028–1048 (2017)MathSciNetCrossRef
41.
42.
Zurück zum Zitat Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1997)MATH Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, New York (1997)MATH
43.
Zurück zum Zitat Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012). in Chinese Sun, Z.Z.: Numerical Methods of Partial Differential Equations, 2nd edn. Science Press, Beijing (2012). in Chinese
Metadaten
Titel
The Temporal Second Order Difference Schemes Based on the Interpolation Approximation for the Time Multi-term Fractional Wave Equation
verfasst von
Hong Sun
Xuan Zhao
Zhi-zhong Sun
Publikationsdatum
17.09.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0820-9

Weitere Artikel der Ausgabe 1/2019

Journal of Scientific Computing 1/2019 Zur Ausgabe