Skip to main content

Advertisement

Log in

Combining Neural Network and Genetic Algorithm for Prediction of Lung Sounds

  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Recognition of lung sounds is an important goal in pulmonary medicine. In this work, we present a study for neural networks–genetic algorithm approach intended to aid in lung sound classification. Lung sound was captured from the chest wall of The subjects with different pulmonary diseases and also from the healthy subjects. Sound intervals with duration of 15–20 s were sampled from subjects. From each interval, full breath cycles were selected. Of each selected breath cycle, a 256-point Fourier Power Spectrum Density (PSD) was calculated. Total of 129 data values calculated by the spectral analysis are selected by genetic algorithm and applied to neural network. Multilayer perceptron (MLP) neural network employing backpropagation training algorithm was used to predict the presence or absence of adventitious sounds (wheeze and crackle). We used genetic algorithms to search for optimal structure and training parameters of neural network for a better predicting of lung sounds. This application resulted in designing of optimum network structure and, hence reducing the processing load and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sovijarvi, A. R. A., Vanderschoot, J., and Earis, J. E., Standardization of computerised respiratory sound analysis. Eur. Respir. Rev. 10:77, 585, 2000.

    Google Scholar 

  2. Pasterkamp, H., Kraman, S. S., and Wodicka, G. R., Respiratory sounds: Advances beyond the stethoscope. Am. J. Respir. Crit. Care. Med. 156:974–987, 1997.

    CAS  PubMed  Google Scholar 

  3. Anderson, K., Aitken, S., Carter, R., MacLeod, J. E., and Moran, F., Variation of breath sound and airway caliber induced by histamine challenge. Am. Rev. Respir. Dis. 141:1147–1150, 1990.

    CAS  PubMed  Google Scholar 

  4. Gavriely, N., Palti, Y., Alroy, G., and Grotberg, J. B., Measurement and theory of wheezing breath sounds. J. Appl. Physiol. 57:481–492, 1984.

    CAS  PubMed  Google Scholar 

  5. Malmberg, L. P., Pesu, L., and Sovijärvi, A. R. A., Significant differences in flow standardised breath sound spectra in patients with chronic obstructive pulmonary disease, stable asthma, and healthy lungs. Thorax 50:1285–1291, 1995.

    CAS  PubMed  Google Scholar 

  6. Pasterkamp, H., Consunji-Araneta, R., Oh, Y., and Holbrow, J., Chest surface mapping of lung sounds during methacholine challenge. Pediatric. Pulmonol. 2;21–30, 1997.

    Google Scholar 

  7. Schreur, H. J., Diamant, Z., Vanderschoot, J., Zwinderman, A. H., Dijkman, J. H., and Sterk, P. J., Lung sounds during allergeninduced asthmatic responses in patients with asthma. Am. J. Respir. Crit. Care. Med. 153:1474–1480, 1996.

    CAS  PubMed  Google Scholar 

  8. Baughman, R. P., Shipley, R. T., Loudon, R. G., and Lower, E., Crackles in interstitial lung disease: Comparison of sarcoidosis and fibrosing alveolitis. Chest 100:96–101, 1991.

    CAS  PubMed  Google Scholar 

  9. Dalmasso, F., Guarene, M., Spagnolo, R., Benedetto, G., and Righini, G., A computer system for timing and acoustical analysis of crackles: A study in cryptogenic fibrosing alveolitis. Bull. Eur. Physio-Pathol. Respir. 20:139–144, 1984.

    CAS  Google Scholar 

  10. al Jarad, N., Strickland, B., Borhamley, G., Lock, S., Logan-Sinclair, R., and Rudd, R. M., Diagnosis of asbestosis by a time expanded wave form analysis, auscultation and high resolution computed tomography: A comparative study. Thorax 48;347–353, 1993.

    CAS  PubMed  Google Scholar 

  11. Murphy, R. L., Gaensler, E. A., Holford, S. K., Del Bono, E. A., and Epler, G., Crackles in the early detection of asbestosis. Am. Rev. Respir. Dis. 129:375–379, 1984.

    PubMed  Google Scholar 

  12. Piirilä, P., Sovijärvi, A. R. A., Kaisla, T., Rajala, H. M., and Katila, T., Crackles in patients with fibrosing alveolitis, bronchiectasis, COPD and heart failure. Chest 99:1076–1083, 1991.

    PubMed  Google Scholar 

  13. Sovijärvi, A. R. A., Malmberg, L. P., Paajanen, E., Piirilä, P., Kallio, K., and Katila, K., Averaged and time-gated spectral analysis of respiratory sounds. Repeatability of spectral parameters in healthy men and in patient with fibrosing alveolitis. Chest 109:1283–1290, 1996.

    PubMed  Google Scholar 

  14. Sovijärvi, A. R. A., Piirilä, P., and Luukkonen, R., Separation of pulmonary disorders with two-dimensional discriminant analysis of crackles. Clin. Physiol. 16:172–181, 1996.

    Google Scholar 

  15. Forgacs, P., Lung Sounds, Macmillan, New York, 1978.

    Google Scholar 

  16. Sovijärvi, A. R. A., Malmberg, L. P., Charbonneau, G., Vanderschoot, J., Dalmasso, F., Sacco, C., Rossi, M., and Earis, J. E., Characteristics of breath sounds and adventitious respiratory sounds. Eur. Respir. Rev. 10:77,591–596, 2000.

    Google Scholar 

  17. Sovijarvi, A. R. A., Vandershoot, J., and Earis J. E., (eds.), Computerized Sound Analysis (CORSA): Recommended Standards for Terms and Techniques-ERS Task Force Report, European Respiratory Review, Vol. 10, ERS Journals Ltd, UK, 2000, Review No. 77.

  18. Crick, F., The recent excitement about neural networks. Nature 337:129–132, 1989.

    CAS  PubMed  Google Scholar 

  19. Tu, J., Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J. Clin. Epidemiol. 49:1225–1231, 1996.

    CAS  PubMed  Google Scholar 

  20. Pesu, L., Helistö, P., Ademovic, E., Pesquet, J. C., Saarinen, A., Sovijärvi, A. R. A., Classification of respiratory sounds based on wavelet packet decomposition and learning vector quantization. Technol. Health Care 6:65–74, 1998.

    CAS  PubMed  Google Scholar 

  21. Oud, M., Lung function interpolation by means of neural-network-supported analysis of respiration sounds. Med. Eng. Phys. 25:309–316, 2003.

    CAS  PubMed  Google Scholar 

  22. Rietveld, S., Oud, M., and Dooijes, E. H., Classification of asthmatic breath sounds: Preliminary results of the classifying capacity of human examiners versus artificial neural networks. Comput. Biomed. Res. 32:440–448, 1992.

    Google Scholar 

  23. Wilks, P. A. D., and English, M. J., A system for rapid identification of respiratory abnormalities using a neural network. Med. Eng. Phys. 17:551–555, 1995.

    CAS  PubMed  Google Scholar 

  24. Malmberg, L., Kallio, K., Haltsonen, S., Katila, T., Sovijarvi, A., Classification of lung sounds in patients with asthma, emphysema, fibrosing alveolitis and healthy lungs by using self-organizing maps. Clin. Physiol. 16:115–129, 1996.

    CAS  PubMed  Google Scholar 

  25. Waitman, L. R., Clarkson, K. P., Barwise, J. A., and King, P. H., Representation and classification of breath sounds recorded in an intensive care setting using neural networks. J. Clin. Monit. Comput. 16:95–105, 2005.

    Google Scholar 

  26. Yao, X., Evolving artificial neural networks. IEEE Trans. Neural Netw. 87:1423–1447, 1999.

    Google Scholar 

  27. Castillo, P. A., Merelo, J. J., Prieto, A., Rivas, V., and Romero, G., G-prop: Global optimization of multilayer perceptrons using Gas. Neurocompution 35:149–163, 2000.

    Google Scholar 

  28. Bath, P. A., Pendleton, N., Morgan, K., Clague, J. E., Horan, M. A., and Lucas, S. B., New approach to risk determination: Development of risk profile for new falls among community-dwelling older people by use of a genetic algorithm neural network (GANN). J. Gerontol. A Biol. Sci. Med. Sci. 55:M17–M21, 2000.

    CAS  PubMed  Google Scholar 

  29. Narayanan, M. N., and Lucas, S. B., A genetic algorithm to improve a neural network to predict a patient’s response to warfarin. Methods Inf. Med. 32:55–58, 1993.

    CAS  Google Scholar 

  30. Potter, S. R., Miller, M. C., and Mangold, L. A., Genetically engineered neural networks for predicting prostate cancer progression after radical prostatectomy., Urology. 54:791–795, 1999.

    CAS  PubMed  Google Scholar 

  31. Dybowski, R., Weller, P., Chang, R., and Gant, V., Prediction of outcome in critically ill patients using artificial neural network synthesised by genetic algorithm. Lancet 347:1146–1150, 1997.

    Google Scholar 

  32. Heckerling, P. S., Gerber, B. S., Tape, T. G., and Wigton, R. S., Use of genetic algorithm for neural network to predict community-acquired pneumonia. Artif. Intell. Med. 30:71–84, 2004.

    PubMed  Google Scholar 

  33. Güler, I., and Übeyli, E. D., Detection of ophthalmic artery stenosis by least-mean squares backpropagation neural network. Comput. Biol. Med. 33:333–343, 2003.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İnan Güler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güler, İ., Polat, H. & Ergün, U. Combining Neural Network and Genetic Algorithm for Prediction of Lung Sounds. J Med Syst 29, 217–231 (2005). https://doi.org/10.1007/s10916-005-5182-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-005-5182-9

Key words

Navigation