Skip to main content

Advertisement

Log in

Use of Support Vector Machines and Neural Network in Diagnosis of Neuromuscular Disorders

  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this study the performance of support vector machine (SVM)and back-propagation neural network were applied to analyze the classification of the electromyogram (EMG) signals obtained from normal, neuropathy and myopathy subjects. By using autoregressive (AR) modeling, AR coefficients were obtained from EMG signals. Moreover, the support vector machine and artificial neural network (ANN) were used as base classifiers. The AR coefficients were benefited as inputs for SVM and ANN. Besides, these coefficients were tested both in ANN and SVM. The results show that SVM has high anticipation level in the diagnosis of neuromuscular disorders. It is proved that its test performance is high compared with ANN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basmajian, J., and De Luca, C. J., Muscles Alive, Williams & Wilkins, Baltimore, 1985.

    Google Scholar 

  2. Deluca, C. J., Towards Understanding the EMG Signal Ch 3 of Muscles Alive, fourth edition, Williams & Wilkonson, Bultimore, 1978.

    Google Scholar 

  3. Stalberg, E., Andreassen, S., Falck, B., Lang, H., Rosenfalck, A., and Trojaborg, W., Quantitative analysis of individual motor unit potentials: A proposition for standardized terminology f1and criteria for measurement. J. Clin. Neurophsiol. 3(4):313–348, 1986.

    CAS  Google Scholar 

  4. Cadzow, J. A., ARMA modeling of time series. IEEE Trans. Pattern Anal. Mach. Intell. 1982.

  5. Marple, S. L., Digital Spectral Analysis with Application, Prentice-Hall, Englewood Cliffs, NJ, 1987.

    Google Scholar 

  6. Graupe, D., and Cline, W. K., Functional separation of EMG signals via ARMA identification methods for prosthesis control purposes. IEEE Trans. Syst. Man Cyber. SM-5:252–259, 1975.

    Google Scholar 

  7. Coatrieux, J. L., Interference electomyogram processing. Part II. Experimental and simulated EMG AR modeling. Elect. Clin. Neurophysiol. 23:481–490, 1983.

    CAS  Google Scholar 

  8. Maranzana, M. F., Molinari, R. R., and Somma-Riva, G., The parameterization of the electrmyographic signal: An approach based on simulated EMG signals. Elect. Clin. Neurophysiol. 24:47–65, 1984.

    Google Scholar 

  9. Basmajian, J. V., Gopal, D. N., and Ghista, D. N., Electrodiagnostic model for motor unit action potential generation. Am. J. Phys. Med. 64:460–475, 1985.

    Google Scholar 

  10. France, F. H. R., and Santucci, G., Perspectives of Information Processing in Medical Application Strategic Issues, Requirements and Option for the European Community, 1991.

  11. Frize, M., Ennett, M., Stevenson, M., and Trigg, C. E., Clinical decision support for intensive care unit using ANN. Medical Eng. Phys. 23:217–225, 2001.

    CAS  Google Scholar 

  12. Basheer, I. A., and Hajmeer, M., Artificial neural networks: Fundamentals, computing, design and application. J. Microbiol. Methods 43:3–31, 2000.

    CAS  PubMed  Google Scholar 

  13. Abel, E. W., Zacharia, P. C., Forster, A., and Farrow, T. L., Neural network analysis of the EMG interference pattern. Med. Eng. Phys 18:12–17, 1996.

    CAS  PubMed  Google Scholar 

  14. Savelberg, H. H., and Herzog, W., Prediction of dynamic tendon forces from electromyographic signals: An artificial neural network approach. J. Neurosci. Methods 30,78(1–2):65–74, 1997.

    Google Scholar 

  15. Liu, M. M., Herzog, W., and Savelberg, H. H., Dynamic muscle force predictions from EMG: An artificial neural network approach. J Electromyogr. Kinesiol 9(6):391–400, 1999.

    CAS  PubMed  Google Scholar 

  16. Kumaravel, N., and Kavitha, V., Automatic diagnosis of neuromuscular disease using neural network. Biomed. Sci. Instrum. 90:245–250, 1994.

    Google Scholar 

  17. Nussbaum, M. A., Martin, B. J., and Chaffin, D. B., A neural network model for simulation of torso muscle coordination. J. Biomech. 30(3):251–258, 1997.

    CAS  PubMed  Google Scholar 

  18. Nussbaum, M. A., and Chaffin, N. B., Evaluation of artificial neural network modeling to predict torso muscle activity. Ergonomics 39(12):1430–1444, 1996.

    CAS  PubMed  Google Scholar 

  19. Nussbaum, M. A., Chaffin, D. B., and Martin, B. J., A back-propagation neural network model of lumbar muscle recruitment during moderate static exertions. J. Biomech. 28(9):1015–1024, 1995.

    CAS  PubMed  Google Scholar 

  20. Pattichis, C. S., and Elia, G. A., Autoregressive and Cepstral analysis the motor unit potential. Med. Eng. Phys. 405–419, 1999.

  21. Vapnik, V. N., Statistical Learning Theory, Wiley Series on Adaptive and Learning Systems for Signal Processing, Communications and Control, Wiley, New York, 1998.

  22. Hearst, M., et al., Support vector machines. IEEE Intell. Syst. 13(4), July–August 1998.

  23. Millet-Roig, J., Ventura-Galiano, R., Chorro-Gasco, F. J., and Cebrian, A., Support vector machine for arrhythmia discrimination with wavelet transform-based feature selection. Comput. Cardiol. 407–410, 2000.

  24. Guler, I., Hardalac, F., and Muldur, S., Determination of aorta failure with the application of FFT, AR and wavelet methods to Doppler technique. Comput. Biol. Med. 31:229–238, 2001.

    CAS  PubMed  Google Scholar 

  25. Proakis, J. G., and Manolakis, D. G., Digital Signal Processing. Principles Algorithms and Applications, 2{nd} eds., Macmillan Publishing Company, New York, 1992.

    Google Scholar 

  26. Akaike, H., A new look at the statistical model identification. IEEE Trans. Autom. Control. 19:716–723, 1974.

    Google Scholar 

  27. Haykin, S., Neural Network—A Comprehensive Foundation, Macmillan, New York, 1994.

    Google Scholar 

  28. Hassoun, M. H., Fundamentals of Artificial Neural Network, MIT Press Cambridge, MA, 1995.

    Google Scholar 

  29. Hanley, J. A., McNeil, B. J., The meaning and use of the area under the Receiver Operating Characteristic (ROC) curve. Radiology 143:29–36, 1982.

    CAS  PubMed  Google Scholar 

  30. Basher, I. A., and Hajmeer, M., Artificial neural network fundamentals, computing, design and application. J. Microb. Methods 43:3–31, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihal Fatma GÜler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

GÜler, N.F., Koçer, S. Use of Support Vector Machines and Neural Network in Diagnosis of Neuromuscular Disorders. J Med Syst 29, 271–284 (2005). https://doi.org/10.1007/s10916-005-5187-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-005-5187-4

Key words

Navigation