Skip to main content

Advertisement

Log in

Application of K- and Fuzzy c-Means for Color Segmentation of Thermal Infrared Breast Images

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Color segmentation of infrared thermal images is an important factor in detecting the tumor region. The cancerous tissue with angiogenesis and inflammation emits temperature pattern different from the healthy one. In this paper, two color segmentation techniques, K-means and fuzzy c-means for color segmentation of infrared (IR) breast images are modeled and compared. Using the K-means algorithm in Matlab, some empty clusters may appear in the results. Fuzzy c-means is preferred because the fuzzy nature of IR breast images helps the fuzzy c-means segmentation to provide more accurate results with no empty cluster. Since breasts with malignant tumors have higher temperature than healthy breasts and even breasts with benign tumors, in this study, we look for detecting the hottest regions of abnormal breasts which are the suspected regions. The effect of IR camera sensitivity on the number of clusters in segmentation is also investigated. When the camera is ultra sensitive the number of clusters being considered may be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Siegel, R., and Howell, J. R., Thermal radiation heat transfer. Hemisphere, Washington, DC, 1992.

    Google Scholar 

  2. Jones, B. F., A reappraisal of the use of infrared thermal image analysis in medicine. IEEE Transactions on Medical Imaging. 17:61019–1027, 1998 doi:10.1109/42.746635.

    Article  Google Scholar 

  3. Ng, E. Y.-K. (2008). A review of thermography as promising non-invasive detection modality for breast tumour. International Journal of Thermal Sciences. doi:10.1016/j.ijthermalsci.2008.06.015

  4. Diakides, N., and Bronzino, J. D., Medical infrared imaging. CRC, Taylor & Francis, New York, 2008.

    Google Scholar 

  5. Qi, H., Kuruganti, P., & Liu, Z. (2002). Early detection of breast cancer using thermal texture maps. Proceeding In IEEE International Symposium on Biomedical Imaging, Macro to Nano, pp. 309–312, Washington, D.C.

  6. Ng, E. Y. K., and Kee, E. C., Advanced integrated technique in breast cancer thermography. Journal of Medical Engineering & Technology. 32:2103–114, 2007 doi:10.1080/03091900600562040.

    Article  Google Scholar 

  7. www.earlycancerdetection.com/breast_thermo.html (last accessed Aug. 2008)

  8. Foster, K. R., Thermographic detection of breast cancer. IEEE Engineering in Medicine and Biology Magazine. 17:610–14, 1998 doi:10.1109/51.734241.

    Article  Google Scholar 

  9. Keyserlingk, J. R., Ahlgren, P. D., Yu, E., and Belliveau, N., Infrared imaging of breast: Initial reappraisal using high-resolution digital technology in 100 successive cases of stage I and II breast cancer. Breast Journal. 4:4245–251, 1998 doi:10.1046/j.1524-4741.1998.440245.x.

    Article  Google Scholar 

  10. Qi, H., Kuruganti, P. T., and Snyder, W. E., Detecting breast cancer from thermal infrared images by asymmetry analysis, biomedical engineering handbook. CRC, Boca Raton, 2006(ch. 27–1 to 27–14).

    Google Scholar 

  11. Keith, L. G., Oleszczuk, J. J., and Laguens, M., Circadian rhythm chaos: A new breast cancer marker. International Journal of Fertility and Women’s Medicine. 46:238–247, 2001.

    Google Scholar 

  12. Koay, J., Herry, C. H., & Frize, M. (2004). Analysis of Breast Thermography with Artificial Neural Network, In Proceedings 26th IEEE EMBS Conf., San Francisco, CA, USA, pp: 1159–1162, Sep. 1–5.

  13. Pennes, H. H., Analysis of tissue and arterial blood temperature in resting forearm. Journal of Applied Physiology. 1:293–122, 1948.

    Google Scholar 

  14. Lawson, R. N., Implications of surface temperature in the diagnosis of breast cancer. Canadian Medical Association Journal. 75:4309–310, 1956.

    MathSciNet  Google Scholar 

  15. Gore, J. P., and Xu, L. X., Thermal imaging for biological and medical diagnostics, biomedical photonics handbook. CRC, Boca Raton, 2003(ch. 17–1 to 17–4).

    Google Scholar 

  16. Sudharsan, N. M., and Ng, E. Y. K., Parametric optimisation for tumour identification: Bioheat equation using ANOVA & Taguchi Method. International Journal of Engineering in Medicine. 214:5505–512, 2000.

    Article  Google Scholar 

  17. Ng, E. Y. K., and Sudharsan, N. M., An improved 3-D direct numerical modelling and thermal analysis of a female breast with tumour. International Journal of Engineering in Medicine. 215:125–37, 2001.

    Article  Google Scholar 

  18. Ng, E. Y. K., and Sudharsan, N. M., Effect of blood flow, tumour and cold stress in a female breast: A novel time-accurate computer simulation. International Journal of Engineering in Medicine. 215:H4393–404, 2001.

    Article  Google Scholar 

  19. Zhao, Q., Zhang, J., Wang, R., and Cong, W., Use of a thermocouple for malignant tumor detection. IEEE Engineering in Medicine and Biology Magazine. 27:164–66, 2008.

    Article  Google Scholar 

  20. Jakubowska, T., Wiecek, B., Wysocki, M., & Drews-Peszynski, C. (2003). Thermal signatures for breast cancer screening comparative study, In Proceedings of the 25th Annual International Conference of the IEEE EMBS Conference, Cancun, 2:1117–1120.

  21. Ng, E. Y. K., and Fok, S. C., A framework for early discovery of breast tumor using thermography with artificial neural network. Breast Journal. 9:4341–343, 2003 doi:10.1046/j.1524-4741.2003.09425.x.

    Article  Google Scholar 

  22. Zhou, X., Zhang, C., & Li, S. (2006). A perceptive uniform pseudo-color coding method of SAR images, Radar, CIE. International Conference, Oct. 2006 IEEE, pp. 1–4.

  23. Li, H., and Burgess, A. E., Evaluation of signal detection performance with pseudo-color display and lumpy backgrounds. In: KundelH. L. (Ed.), SPIE, medical imaging: Image perception, vol 3036 Newport Beach CA, USA, pp. 143–149, 1997.

    Google Scholar 

  24. Connolly, C., and Fliess, T., A study of efficiency and accuracy in the transformation from RGB to CIELAB color space. IEEE Transactions on Image Processing. 6:71046–1048, 1997 doi:10.1109/83.597279.

    Article  Google Scholar 

  25. Frize, M., Herry, C., & Scales, N. (2003). Processing thermal images to detect cancer and assess pain, Proc of the 4th Annual IEEE Conf On Information Technology Application In Biomedicine, UK, 234–237.

  26. Wu, M. N., Lin, C. C., & Chang, C. C. (2007). Brain tumor detection using color based K-means clustering, Intelligent Information Hiding and Multimedia Signal Processing, 3rd Int. Conf., Washington, DC, USA, 2: 245–250, Nov.

  27. MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In Proceedings of Fifth Berkeley Symp. on Math. Statist. and Prob., (Univ. of Calif. Press, 1967), 1:281–297.

  28. Bezdek, J. C., Pattern recognition with fuzzy objective function algorithms. Plenum, New York, 1981.

    MATH  Google Scholar 

  29. http://mathworld.wolfram.com/ K-Means Clustering Algorithm.html (last accessed Aug. 2008).

  30. Bezdek, J. C., Keller, J., Krisnapuram, R., & Pal, N. R. (1999). Fuzzy models and algorithms for pattern recognition and image processing. Norwell, MA: Kluwer.

  31. http://aathermography.com (last accessed Aug. 2008).

  32. http://www.breastthermography.com/case_studies.htm (last accessed Aug. 2008).

  33. www.thermologyonline.org/Breast/breast_thermography_what.htm (last accessed Aug. 2008).

  34. http://www.thermographyofiowa.com/casestudies.htm (last accessed Aug. 2008).

  35. Sowmya, B., & Bhattacharya, S. (2005). Color image segmentation using fuzzy clustering techniques, IEEE Indicon, Conf., Chennai, India, pp: 41–45, Dec.

  36. Solvenia, K. R. (2006). Fuzzy C-means clustering and facility location problems. Proceeding of Artificial Intelligence and Soft Computing. Palma de Mallorca, Spain.

  37. Deelers, S., and Auwatanamongkol, S., Enhancing K-means algorithm with initial cluster centers derived from data partitioning along the data axis with the highest variance. International Journal of Computing Science. 2:4247–252, 2007.

    Google Scholar 

  38. Bradley, P. S., & Fayyad, U. M. (1998). Refining Initial Points for K-Means Clustering, Proc. 15th International Conf. on Machine Learning. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., pp. 91–99.

  39. Krishna, K., and Narasimha, M. M., Genetic K-Means Algorithm. IEEE Transactions on Systems, Man and Cybernetics. Part B. Cybernetics. 29:3433–439, 1999 doi:10.1109/3477.764879.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. K. Ng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

EtehadTavakol, M., Sadri, S. & Ng, E.Y.K. Application of K- and Fuzzy c-Means for Color Segmentation of Thermal Infrared Breast Images. J Med Syst 34, 35–42 (2010). https://doi.org/10.1007/s10916-008-9213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9213-1

Keywords

Navigation