Skip to main content
Log in

Morphology Variability Analysis of Wrist Pulse Waveform for Assessment of Arteriosclerosis Status

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

In this paper, approximate entropy (ApEn) is applied to study the variability of pulse waveform for assessing coronary arteriosclerosis status. Having analyzed the wrist pulse waveforms taken from both normal subjects and the patients suffering from coronary arteriosclerosis (CA) disorders, we find that pulse morphology variability (PMV) is more efficient than pulse interval variability (PIV) in assessing the conditions of human coronary artery. Usually, the PMVs of the healthy are higher than those of the patients with CA diseases, and the PMVs of patients with CA diseases have more high frequency components than those of the healthy subjects. That is to say, the CA disease also has influence on vascular tone. The effect of changes in cardiac performance due to CA disease can be reflected through the PMV. The experiment demonstrates that the specificity and sensitivity of the PMV’s spectral energy ratio for clinical diagnosis of cardiovascular system is 80% and 97%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Allen, J., Photoplethysmography and its application in clinical physiological measurement. Physiol. Meas. 28:R1–R39, 2007. doi:10.1088/0967-3334/28/3/R01.

    Article  Google Scholar 

  2. Amber, R. B., Pulse diagnosis: detailed interpretations for Eastern & Western holistic treatments, Aurora, 1993.

  3. Lu, W. A., Wang, Y. Y. L., and Wang, W. K., Pulse analysis of patients with sever liver problems. IEEE Eng. Med. Biol. 18(1):73–75, 1999. doi:10.1109/51.740985.

    Article  Google Scholar 

  4. O’Rourke, M. F., et al., Pulse wave analysis. Br. J. Clin. Pharmacol. 51:507–522, 2001. doi:10.1046/j.0306-5251.2001.01400.x.

    Article  Google Scholar 

  5. Yoon, Y. Z., Lee, M. H., and Soh, K. S., Pulse type classification by varying contact pressure, IEEE Engineering in Medicine and Biology, pp. 106–110, 2000.

  6. Xu, L. S., et al., Baseline wander correction in pulse waveforms using wavelet-based cascaded adaptive filter. Comput. Biol. Med. 37(5):716–731, 2007. doi:10.1016/j.compbiomed.2006.06.014.

    Article  Google Scholar 

  7. Aritomo, M., Yonezawa, Y., A wrist-mounted activity and pulse recording system, In Proceedings of the First Joint BMES/EMBS Conference Serving Humanity, Advancing Technology, pp. 693, Oct 1999.

  8. Lee, C. T., and Wei, L. Y., Spectrum analysis of human pulse. IEEE Trans. Biomed. Eng. 30(6):348–352, 1983. doi:10.1109/TBME.1983.325136.

    Article  Google Scholar 

  9. Kelly, R., Hayward, C., Avolio, A., and O’Rourke, M., Noninvasive determination of age-related changes in the human arterial pulse. Circulation. 80:1652–1659, 1989.

    Google Scholar 

  10. Yoon, S. H., Koga, Y., Matsumoto, I., and Ikezono, E., Clinical study of objective pulse diagnosis. Am. J. Chin. Med. 14(3-4):179–183, 1986.

    Google Scholar 

  11. Navakatikyan, M. A., Barrett, C. J., Head, G. A., Ricketts, J. H., and Malpas, S. C., A real-time algorithm for the quantification of blood pressure waveforms. IEEE Trans. Biomed. Eng. 49(7):662–670, 2002. doi:10.1109/TBME.2002.1010849.

    Article  Google Scholar 

  12. Murray, W. B., and Foster, P. A., The peripheral pulse wave: information overlook. J. Clin. Monit. 12:365–377, 1996. doi:10.1007/BF02077634.

    Article  Google Scholar 

  13. Lee, J. Y., The study on the intellectual analysis algorithm for oriental pulse parameters. J. Med. Syst. 31(5):345–349, 2007. doi:10.1007/s10916-007-9074-z.

    Article  Google Scholar 

  14. Naschitz, J. E., Itzhak, R., Shaviv, N., et al., Assessment of cardiovascular reactivity by fractal and recurrence quantification analysis of heart rate and pulse transit time. J. Hum. Hypertens. 17(2):111–118, 2003. doi:10.1038/sj.jhh.1001517.

    Article  Google Scholar 

  15. Wolf, A., Swift, J. B., Swinney, H. L., and Vastano, J. A., Determining Lyapunov exponenets from a time-series. Physica D. 16:285–317, 1985. doi:10.1016/0167-2789(85)90011-9.

    Article  MATH  MathSciNet  Google Scholar 

  16. Seker, R., Saliu, S., Birand, A., and Kudaiberdieva, G., Validity test for a set of nonlinear measures for short data length with reference to short-term heart rate variability signal. J. Syst. Integration. 10(1):41–53, 2000. doi:10.1023/A:1026507317626.

    Article  Google Scholar 

  17. Pincus, S., Approximate entropy (ApEn) as a complexity measure. Chaos. 5:110–117, 1995. doi:10.1063/1.166092.

    Article  Google Scholar 

  18. Pincus, S. M., and Keefe, D. L., Quantification of hormone pulsatility via an approximate entropy algorithm. Am. J. Physiol. Endocrinol. Metab. 25(5):E741–E754, 1992.

    Google Scholar 

  19. Wang, K. Q., Xu, L. S., and Zhang, D., Approximate entropy based pulse variability analysis, In Proceedings of the IEEE Symposium on Computer-Based Medical Systems pp. 236–241, 2003.

  20. Gary, E. M., Christopher, W. B., Dennis, J. M., Cheryl, M. A., Stephen, P. G., Stanley, M. F., and Jay, N. C., Age-related abnormalities in arterial compliance identified by pressure pulse contour analysis: aging and arterial compliance. Hypertension. 33:1392–1398, 1999.

    Google Scholar 

  21. Chan, G. S. H., Middleton, P. M., Lovell, N. H., and Celler, B. G., Extraction of photoplethysmographic waveform variability by lowpass filtering. Proceedings of the 27th Annual Conference on IEEE Engineering in Medicine and Biology, Shanghai, China, 2005. pp 5568–5571, September 1–4.

    Google Scholar 

  22. Oliver, J. J., and Webb, D. J., Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler. Thromb. Vasc. Biol. 23:554–566, 2003. doi:10.1161/01.ATV.0000060460.52916.D6.

    Article  Google Scholar 

  23. Nichols, W. W., and O’Rourke, M. F., McDonald’s Blood Flow in Arteries, 5th edition. Hodder Arnold, London, 2005.

    Google Scholar 

  24. Pincus, S. M., and Huang, W. M., Approximate entropy: statistical properties and applications. Comm. Statist. Theory Methods. 21(11):3061–3077, 1992. doi:10.1080/03610929208830963.

    Article  MATH  Google Scholar 

  25. Malik, M., et al., Heart rate variability, standards of measurement, physiological interpretation, and clinical use, Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation. 93(5):1043–1065, 1996.

    Google Scholar 

  26. Friesen, G. M., Jannett, T. C., Manal, A. J., et al., A comparison of the noise sensitivity of nine QRS detection algorithms. IEEE Trans. Biomed. Eng. 37:85–98, 1990. doi:10.1109/10.43620.

    Article  Google Scholar 

  27. Xu L. S., Zhang D., Wang K. Q., and Wang L., Arrhythmic pulses detection using Lempel-Ziv complexity analysis, EURASIP Journal on Applied Signal Processing 2006 Article ID 18268, 12 pages, 2006.

  28. Takayuki, K., Michinori, K., Tetsuya, K., and Noriko, N., Accuracy of pulse rate variability parameters obtained from finger plethysmogram: a comparison with heart rate variability parameters obtained from ECG. J. Occup. Health. 39:154–155, 1997. doi:10.1539/joh.39.154.

    Article  Google Scholar 

  29. Parati, G., Saul, J. P., Di Rienzo, M., and Mancia, G., Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation. Hypertension. 25:1276–1286, 1995.

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the Project CUHK4199/03E, Chinese NSFC Grant 60620160097, and PhD program foundation of The Ministry of Education of China 20040213017. The authors also thank to Prof. Pincus, Michael Small (The Hong Kong Polytechnic University) for very useful suggestions. Thanks to all of the volunteers for providing invaluable pulse data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisheng Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Meng, M.QH., Qi, X. et al. Morphology Variability Analysis of Wrist Pulse Waveform for Assessment of Arteriosclerosis Status. J Med Syst 34, 331–339 (2010). https://doi.org/10.1007/s10916-008-9245-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-008-9245-6

Keywords

Navigation