Skip to main content

Advertisement

Log in

Development of Abnormal Gait Detection and Vibratory Stimulation System on Lower Limbs to Improve Gait Stability

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The purpose of this study is to develop an abnormal gait detection algorithm and a vibratory stimulation system on a lower limb to improve gait stability and prevent falls. The system consists of a gait measurement module, an abnormal gait detection module, and a vibratory stimulation module. The gait measurement module measures the vertical acceleration of the ankle during walking using an accelerometer. The measured acceleration values are sent to a portable microcontroller, which controls vibratory stimulations to the ankles based on an algorithm that detects the peak acceleration values. If the acceleration peaks are found to occur irregularly, the abnormal gait detection algorithm activates the vibratory stimulation module. To determine the effect of vibratory stimulations under dynamic condition, this study investigated the contribution of ankle muscle proprioception on the control of dynamic stability and lower limb kinematics while walking using vibratory stimulation to alter the muscle spindle output of individuals’ left lower limb. Vibrators were attached to the left ankle joint (tibialis anterior, triceps surae). Participants were required to walk along a travel path and step over an obstacle placed in their way. There were four task conditions; an obstacle (10%, 20%, and 30% of the participants’ height) was positioned at the midpoint of the walkway, or the participants’ walking path remained clear. For each obstacle condition, participants experienced either no vibration, or vibration of the tibialis anterior muscle and the triceps surae muscle of the left lower limb. Vibration began upon detection of an abnormal gait and continued for one second. Vibrating the ankle muscles of the left lower limb while stepping over an obstacle resulted in significant changes in COM behavior on both the anterior/posterior (A/P) and medial/lateral (M/L) planes. The results provide strong evidence that the primary endings of the ankle muscle spindles play a significant role in the control of posture and balance during the swing phase of locomotion by providing information on the movement of the body’s COM with respect to the support foot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Inglis, J. T., Frank, J. S., and Inglis, B., The effect of muscle vibration on human position sense during movements controlled by lengthening muscle contraction. Exp. Brain Res. 84:631–634, 1991. doi:10.1007/BF00230975.

    Article  Google Scholar 

  2. Lord, S. R., Ward, J. A., Williams, P., and Anstey, K., Physiological factors associated with falls in older community-dwelling women. J. Am. Geriatr. Soc. 42:1110–1117, 1994.

    Google Scholar 

  3. Kim, C. G., An analysis of fall incidence rate and the related factors of fall in hospitalized patient. Master’s thesis, Seoul National University, 2003.

  4. Kim, M. J., Associated factors caused by falls of older people in community-dwelling. Master’s thesis, Ewha Womans University, 2004.

  5. Crawford, C., and Karabatsos, K., Normative values for healthy young and elderly adult populations on the KAT balance system. Issues On Aging. 18:10–14, 1995.

    Google Scholar 

  6. www.freedomhealthcare.co.uk

  7. Inglis, J. T., Frank, J. S., and Inglis, B., The effect of muscle vibration on human position sense during movements controlled by lengthening muscle contraction. Exp. Brain Res. 84:631–634, 1991. doi:10.1007/BF00230975.

    Article  Google Scholar 

  8. Sorensen, K. L., Hollands, M. A., and Patla, A. E., The effect of human ankle muscle vibration on posture and balance during adaptive locomotion. Exp. Brain Res. 143:24–34, 2002. doi:10.1007/s00221-001-0962-z.

    Article  Google Scholar 

  9. Sabelman, E., Fiene, A., Timbie, A., Accelerometric activity identification for remote assessment of quality of movement. in Proceedings of the 26th Annual EMBS International Conference of the IEEE EMBS, San Francisco, CA, USA, pp.4781–4784, 2004.

  10. Sekine, M., Tamura, T., Fujimoto, T., Fukui, Y., Classification of walking pattern using acceleration waveform in the elderly people. in Proceedings of the 22nd Annual EMBS International Conference, Chicago IL, USA, pp.1356–1359, 2000.

  11. Ailisto, H., Lindholm, M., Mantyjarvi, J., Vildjiounaite, E., Makela, S., Identifying people from gait pattern with accelerometers. in Proceeding of SPIE, vol.5779. Biometric Technol. Hum. Identif. II, 7–14, 2005

  12. Gafurov, D., Helkala, K., Soendrol, T., Gait recognition using acceleration from MEMs. In Proceedings of the First International Conference on Availability, Reliability and Security, 2006.

  13. Wierzbicka, M. M., Gilhodes, J. C., and Roll, J. P., Vibration-induced postural post effects. J. Neurophysiol. 79:143–150, 1998.

    Google Scholar 

  14. Nardone, A., and Schieppati, M., Reflex contribution of spindle group Ia and II afferent input to leg muscle spasticity as revealed by tendon vibration in hemiparesis. Clin. Neurophysiol. 116:1370–1381, 2005. doi:10.1016/j.clinph.2005.01.015.

    Article  Google Scholar 

  15. Sorensen, K. L., Hollands, M. A., and Patla, E., The effects of human ankle muscle vibration on posture and balance during adaptive locomotion. Exp. Brain Res. 143:24–34, 2002. doi:10.1007/s00221-001-0962-z.

    Article  Google Scholar 

  16. Gilhodes, J. C., Gurfinkel, V. S., and Roll, J. P., Role of Ia muscle spindles afferents in post-contraction and postvibration motor effects genesis. Neurosci. Lett. 135:247–251, 1992. doi:10.1016/0304-3940(92)90447-F.

    Article  Google Scholar 

  17. Shinohara, M., Moritz, C. T., Pascoe, M. A., and Enoka, R. M., Prolonged muscle vibration increases stretch reflex amplitude, motor unit discharge rate, and force fluctuations in a hand muscle. J. Appl. Physiol. 99:1835–1842, 2005. doi:10.1152/japplphysiol.00312.2005.

    Article  Google Scholar 

  18. Narati, G., Rossi-Durand, C., and Schmied, A., Proprioceptive control of human wrist extensor motor units during an attention-demanding task. Brain Res. 1018:208–220, 2004. doi:10.1016/j.brainres.2004.05.066.

    Article  Google Scholar 

  19. Riot-Ciscar, E., Rossi-Durand, C., and Roll, J. P., Increased muscle spindle sensitivity to movement during reinforcement manoeuvres in relaxed human subjects. J. Physiol. 523:271–282, 2000. doi:10.1111/j.1469-7793.2000.t01-1-00271.x.

    Article  Google Scholar 

  20. McKinnon, C. D., and Winter, D. A., Control of whole body balance in the frontal plane during human walking. J. Biomech. 26:633–644, 1993. doi:10.1016/0021-9290(93)90027-C.

    Article  Google Scholar 

  21. Prince, F., Winter, D. A., Stergiou, P., and Walt, S. E., Anticipatory control of upper body balance during human locomotion. Gait Posture. 2:19–25, 1994. doi:10.1016/0966-6362(94)90013-2.

    Article  Google Scholar 

  22. Jian, Y., Winter, D. A., Ishac, M. G., and Gilchrist, L., Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture. 1:9–22, 1993. doi:10.1016/0966-6362(93)90038-3.

    Article  Google Scholar 

  23. Chou, L. S., Kaufman, K. R., Brey, R. H., and Draganich, L. F., Motion of the whole body’s center of mass when stepping over obstacles of different heights. Gait Posture. 13:17–26, 2001. doi:10.1016/S0966-6362(00)00087-4.

    Article  Google Scholar 

  24. Chou, L. S., Kaufman, K. R., Hahn, M. E., and Brey, R. H., Mediolateral motion of the center of mass during obstacle crossing distinguishes elderly individuals with imbalance. Gait Posture. 18:125–133, 2003. doi:10.1016/S0966-6362(02)00067-X.

    Article  Google Scholar 

  25. Robinovitch, S. N., Hsiao, E. T., Sandler, R., Cortez, J., Liu, Q., and Paiement, G. D., Prevention of falls and fall-related fractures through biomechanics. Exerc. Sport Sci. Rev. 28:74–79, 2000.

    Google Scholar 

  26. Pijnappels, M., Reeves, N. D., Maganaris, C. N., and van Dieen, J. H., Tripping without falling; lower limb strength, a limitation for balance recovery and a target for training in the elderly. J. Electromyogr. Kinesiol. 18:188–196, 2008. doi:10.1016/j.jelekin.2007.06.004.

    Article  Google Scholar 

  27. Grabiner, M. D., Donovan, S., Bareither, M., Marone, J. R., Hamstra-Wright, K., and Gatts, S., Trunk kinematics and fall risk of older adults: translating biomechanical results to the clinic. J. Electromyogr. Kinesiol. 18:197–204, 2008. doi:10.1016/j.jelekin.2007.06.009.

    Article  Google Scholar 

  28. Hsiao-Wecksler, E. T., Biomechanical and age-related differences in balance recovery using the tether–release method. J. Electromyogr. Kinesiol. 18:179–187, 2008. doi:10.1016/j.jelekin.2007.06.007.

    Article  Google Scholar 

  29. Mille, M. L., Johnson, M. E., Martinez, K. M., and Rogers, M. W., Age-dependent differences in lateral balance recovery through protective stepping. Clin. Biomech. (Bristol, Avon). 20:607–616, 2005. doi:10.1016/j.clinbiomech.2005.03.004.

    Article  Google Scholar 

  30. Vandervoort, A. A., and McComas, A. J., Contractile changes in opposing muscles of the human ankle joint with aging. J. Appl. Physiol. 61:361–367, 1986.

    Google Scholar 

  31. Doherty, T. J., Invited review: aging and sarcopenia. J. Appl. Physiol. 95:1717–1727, 2003.

    Google Scholar 

  32. Frontera, W., Suh, D., Krivickas, L., Hughes, V., Goldstein, R., and Roubenoff, R., Skeletal muscle fiber quality in older men and women. Am. J. Physiol. 279:C611–C618, 2000.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MEST) (The Regional Research Universities Program/Center for Healthcare Technology Development, No. R01-2007-000-20926-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Wook Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, M., Piao, YJ., Eun, Hi. et al. Development of Abnormal Gait Detection and Vibratory Stimulation System on Lower Limbs to Improve Gait Stability. J Med Syst 34, 787–797 (2010). https://doi.org/10.1007/s10916-009-9293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-009-9293-6

Keywords

Navigation