Skip to main content

Advertisement

Log in

Measuring Pulse Wave Velocity Using ECG and Photoplethysmography

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Pulse wave velocity (PWV) is a useful method to assess arterial stiffness and predict mortality of atherosclerosis-related diseases. The progression of atherosclerosis is not homogeneous. There must be difference of PWV between sites by site. Therefore we designed a multi-channel instrument to measure PWV at different sites of the body simultaneously. We measured PWV at six different regions simultaneously. Thirty four healthy adults received the measurement. We found that PWVs were higher in the large vessels, by measuring from the heart to toes and heart to fingers as compared with the measurement from the heart to the earlobes (4.76 ± 0.46 m/s; 4.67 ± 0.41 m/s; 1.10 ± 0.16 m/s). The PWV of the left and right sides were the same. Although there were statistically significances, the correlation of PWV between foot and hand is better than those between ear and foot and between ear and hand. Herein we presented a novel and reliable measurement of PWV. The changes of PWV in different regions may be used in predicting disease processes such as stroke, coronary artery diseases and renal diseases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Laurent, S., Boutouyrie, P., Asmar, R., Gautier, I., Laloux, B., Guize, L., Ducimetiere, P., and Benetos, A., Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 37:1236–1241, 2001.

    Google Scholar 

  2. London, G. M., and Cohn, J. N., Prognostic application of arterial stiffness: task forces. Am. J. Hypertens. 15:754–758, 2002.

    Article  Google Scholar 

  3. Wang, X., Keith, J. C., Jr., Struthers, A. D., and Feuerstein, G. Z., Assessment of arterial stiffness, a translational medicine biomarker system for evaluation of vascular risk. Cardiovasc. Ther. 26(3):214–223, 2008.

    Article  Google Scholar 

  4. Mackenzie, I. S., Wilkinson, I. B., and Cockcroft, J. R., Assessment of arterial stiffness in clinical practice. QJM. 95:67–74, 2002.

    Article  Google Scholar 

  5. Oliver, J. J., and Webb, D. J., Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler. Thromb. Vasc. Biol. 23:554–566, 2003.

    Article  Google Scholar 

  6. Blacher, J., Asmar, R., Djane, S., London, G. M., and Safar, M. E., Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension. 33:1111–1117, 1999.

    Google Scholar 

  7. Wilkinson, I. B., Webb, D. J., and Cockcroft, J. R., Aortic pulse-wave velocity. Lancet. 354:1996–1997, 1999.

    Article  Google Scholar 

  8. Millasseau, S. C., Guigui, F. G., Kelly, R. P., Prasad, K., Cockcroft, J. R., Ritter, J. M., and Chowienczyk, P. J., Noninvasive assessment of the digital volume pulse. Comparison with the peripheral pressure pulse. Hypertension. 36:952–956, 2000.

    Google Scholar 

  9. Tsai, W. C., Chen, J. Y., Wang, M. C., Wu, H. T., Chi, C. K., Chen, Y. K., Chen, J. H., and Lin, L. J., Association of risk factors with increased pulse wave velocity detected by a novel method using dual-channel photoplethysmography. Am. J. Hypertens. 18:1118–1122, 2005.

    Article  Google Scholar 

  10. McLeod, A. L., Uren, N. G., Wilkinson, I. B., Webb, D. J., Maxwell, S. R., Northridge, D. B., and Newby, D. E., Non-invasive measures of pulse wave velocity correlate with coronary arterial plaque load in humans. J. Hypertens. 22:363–368, 2004.

    Article  Google Scholar 

  11. Tillin, T., Chambers, J., Malik, I., Coady, E., Byrd, S., Mayet, J., Wright, A. R., Kooner, J., Shore, A., Thom, S., Chaturvedi, N., and Hughes, A., Measurement of pulse wave velocity: site matters. J. Hypertens. 25:383–389, 2007.

    Article  Google Scholar 

  12. Yu, W. C., Chuang, S. Y., Lin, Y. P., and Chen, C. H., Brachial-ankle vs carotid-femoral pulse wave velocity as a determinant of cardiovascular structure and function. J. Hum. Hypertens. 22:24–31, 2008.

    Article  Google Scholar 

  13. Ulijaszek, S. J., and Kerr, D. A., Anthropometric measurement error and the assessment of nutritional status. Br. J. Nutr. 82:165–177, 1999.

    Article  Google Scholar 

  14. Mattace-Raso, F. U., van der Cammen, T. J., Hofman, A., van Popele, N. M., Bos, M. L., Schalekamp, M. A., Asmar, R., Reneman, R. S., Hoeks, A. P., Breteler, M. M., and Witteman, J. C., Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. Circulation. 113:657–663, 2006.

    Article  Google Scholar 

  15. Willum-Hansen, T., Staessen, J. A., Torp-Pedersen, C., Rasmussen, S., Thijs, L., Ibsen, H., and Jeppesen, J., Prognostic value of aortic pulse wave velocity as index of arterial stiffness in the general population. Circulation. 113:664–670, 2006.

    Article  Google Scholar 

  16. Foo, J. Y. A., Bilateral transit time assessment of upper and lower limbs as a surrogate ankle brachial index marker. Angiology. 59:283–289, 2008.

    Article  Google Scholar 

  17. Foo, J. Y. A., Wilson, S. J., Williams, G. R., Harris, M. A., and Cooper, D. M., Pulse transit time changes observed with different limb positions. Physiol. Meas. 26:1093–1102, 2005.

    Article  Google Scholar 

  18. Gladdish, S., Manawadu, D., Banya, W., Cameron, J., Bulpitt, C. J., and Rajkumar, C., Repeatability of non-invasive measurement of intracerebral pulse wave velocity using transcranial Doppler. Clin. Sci. (Lond) 108:433–439, 2005.

    Article  Google Scholar 

  19. Jiang, B., Liu, B., McNeill, K. L., and Chowienczyk, P. J., Measurement of pulse wave velocity using pulse wave Doppler ultrasound: Comparison with arterial tonometry. Ultrasound. Med. Biol. 34:509–512, 2008.

    Article  Google Scholar 

Download references

Acknowledgment

This research was supported by the National Science Council under Grant NSC 97-2221- E-259-019, Taiwan, Republic of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsien-Tsai Wu.

Appendix

Appendix

Subjects

Age(yrs)

PWV(Normalized)

PWV(Ear)

PWV(Hand-Foot)

Mean

SD

CV

Mean

SD

CV

Mean(m/s)

SD

CV

1

25

0.9681

0.0567

0.0586

1.2375

0.0354

0.0286

4.7225

0.1767

0.0374

2

27

0.8863

0.0800

0.0902

1.0884

0.0719

0.0661

4.4125

0.1289

0.0292

3

25

1.1088

0.0533

0.0481

1.4964

0.0934

0.0624

5.2875

0.2207

0.0417

4

49

1.0138

0.0338

0.0333

1.4025

0.0036

0.0026

4.775

0.158

0.0331

5

24

0.9593

0.0703

0.0733

1.4403

0.0217

0.0151

4.325

0.1008

0.0233

6

28

0.9972

0.0311

0.0312

1.4027

0.0392

0.0279

4.66

0.1885

0.0405

7

23

0.9533

0.0440

0.0461

1.2709

0.1002

0.0789

4.575

0.1714

0.0375

8

22

0.9181

0.0734

0.0799

1.1767

0.1439

0.1223

4.485

0.1328

0.0296

9

24

0.9728

0.0284

0.0292

1.3519

0.0680

0.0503

4.5725

0.045

0.0098

10

27

1.0055

0.0545

0.0542

1.3397

0.0208

0.0155

4.825

0.2859

0.0593

11

26

1.0607

0.0278

0.0262

1.4720

0.0665

0.0451

4.99

0.1424

0.0285

12

26

1.0816

0.0620

0.0573

1.5347

0.0314

0.0205

5.0275

0.2869

0.0571

13

27

1.0279

0.0403

0.0392

1.4651

0.0670

0.0457

4.77

0.1512

0.0317

14

55

1.0609

0.0565

0.0533

1.3772

0.0322

0.0234

5.155

0.2243

0.0435

15

65

1.2448

0.0388

0.0311

1.6729

0.0029

0.0017

5.95

0.2347

0.0394

16

62

1.0828

0.0450

0.0416

1.5093

0.0222

0.0147

5.08

0.207

0.0408

17

70

1.1310

0.0736

0.0651

1.6604

0.0030

0.0018

5.1675

0.3397

0.0657

18

68

1.0374

0.0480

0.0463

1.4911

0.1111

0.0745

4.7925

0.0718

0.015

19

65

0.8209

0.0603

0.0735

1.2136

0.0515

0.0424

3.7325

0.1717

0.046

20

51

0.8479

0.0715

0.0843

1.0570

0.0806

0.0762

4.195

0.1828

0.0436

21

49

0.8951

0.0275

0.0307

1.2267

0.0732

0.0596

4.2375

0.0964

0.0227

22

58

0.9388

0.1612

0.1717

1.0125

0.0177

0.0175

4.915

0.2344

0.0477

23

69

1.0404

0.0257

0.0247

1.4526

0.0493

0.0340

4.88

0.1364

0.0279

24

58

0.9581

0.0403

0.0421

1.2578

0.0244

0.0194

4.63

0.1197

0.0259

25

53

1.0041

0.0132

0.0131

1.4025

0.0036

0.0026

4.7075

0.0222

0.0047

26

61

1.0243

0.0315

0.0307

1.4147

0.0853

0.0603

4.83

0.1039

0.0215

27

57

0.9925

0.0170

0.0171

1.3901

0.0390

0.0281

4.6475

0.0556

0.012

28

66

0.9552

0.0664

0.0695

1.2769

0.0380

0.0298

4.58

0.4186

0.0914

29

44

0.9052

0.0398

0.0440

1.3016

0.0685

0.0526

4.18

0.0392

0.0094

30

56

0.9030

0.0420

0.0465

1.1761

0.0016

0.0013

4.38

0.1329

0.0303

31

55

0.9409

0.0128

0.0136

1.3018

0.0151

0.0116

4.4325

0.0763

0.0172

32

53

1.2170

0.1749

0.1437

1.9809

0.0624

0.0315

5.225

0.1967

0.0377

33

76

1.1422

0.1231

0.1078

1.7863

0.0337

0.0189

5.0275

0.1541

0.0307

34

60

0.9042

0.0302

0.0333

1.2263

0.0336

0.0274

4.3025

0.168

0.039

Mean

 

1.0000

0.0546

0.0544

1.3784

0.0474

0.0356

4.7199

0.164

0.0344

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, AB., Hsu, PC., Chen, ZL. et al. Measuring Pulse Wave Velocity Using ECG and Photoplethysmography. J Med Syst 35, 771–777 (2011). https://doi.org/10.1007/s10916-010-9469-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9469-0

Keywords

Navigation