Skip to main content
Log in

Mobile Telemedicine: A Survey Study

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Telemedicine involves the use of advanced and reliable communication techniques to deliver biomedical signals over long distances. In such systems, biomedical information is transmitted using wireline or wireless communication systems. Mobile telemedicine is an improved form of telemedicine, in which advanced wireless communication systems are used to deliver the biomedical signals of patients at any place and any time. Mobile telemedicine employs advanced concepts and techniques from the fields of electrical engineering, computer science, biomedical engineering, and medicine to overcome the restrictions involved in conventional telemedicine and realize an improvement in the quality of service of medicine. In this paper, we study several mobile telemedicine systems, and it is important to gain a good understanding of mobile telemedicine systems because in the further, such systems are expected to become ubiquitous for the delivery of biomedical signals for medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, C. F., Chen, J. Y., Shiu, R. H., and Chang, S. H., A Ka band WCDMA-based LEO transport architecture in mobile telemedicine. In: Martinez, L., and Gomez, C. (Eds.), Telemedicine in the 21st Century (pp. 187–201). USA: Nova Science Publishers, 2008.

    Google Scholar 

  2. Istepanian, R. S. H., Laxminarayan, S.,and Pattichis, C. S. (Eds.), MHealth: Emerging mobile health systems. New York: Springer, 2006.

  3. Pattichis, C. S., Kyriacou, E., Voskarides, S., Pattichis, M. S., and Istepanian, R., Wireless telemedicine systems: An overview. IEEE Antennas Propag. Mag. 44:143–153, 2002.

    Article  Google Scholar 

  4. Kyriacou, E., Pattichis, M. S., Pattichis, C. S., Panayides, A., and Pitsillides, A., m-Health e-Emergency systems: Current status and future directions. IEEE Antennas Propag. Mag. 49(1):216–231, 2007.

    Article  Google Scholar 

  5. Rashvand, H. F., Salcedo, V. T., Sanchez, E. M., and Iliescu, D., Ubiquitous wireless telemedicine. IET Commun. 2(2):237–254, 2008.

    Article  Google Scholar 

  6. Lin, C. F., and Lee, H. W., Wireless multimedia communication toward mobile telemedicine. Proceedings of the 9th WSEAS International Conference on Applied Informatics and Communications, 232–237, 2009.

  7. Cabral, J. E., and Kim, Y., Multimedia systems for telemedicine and their communications requirement. IEEE Commun. Mag. 34:20–27, 1996.

    Article  Google Scholar 

  8. Murakami, H., Shimizu, K., Yamamoto, K., Mikami, T., Hoshimiya, N., and Kondo, K., Telemedicine using mobile satellite communication. IEEE Trans. Biomed. Eng. 41:488–497, 1994.

    Article  Google Scholar 

  9. http://www.jaxa.jp/projects/sat/ets5/index_e.html.

  10. Anogianakis, G., Maglavera, S., and Pomportsis, A., Relief for maritime medical emergencies through telematics. IEEE Trans. Inf. Technol. Biomed. 254–260, 1998.

  11. McDermott, W. R., Tri, J., Mitchell, M. P., Levens, S. P., Wondrow, M. A., Huie, L. M., Khandheria, B. K., Gilbert, B. K., and Foundation Ma., Optimization of wide-area AlM and local-A rea efhernet/FDDI network configurations for high-speed telemedicine communications employing NASA’s ACTS. IEEE Netw. 30–38, 1999.

  12. http: //www.explainthatstuff.com/satellites.html.

  13. Hwang, S. C., and Lee, M. H., A WEB-based TelePACS using an asymmetric satellite system. IEEE Trans. Inf. Technol. Biomed. 212-215, 2000.

  14. Pierucci, L., and DelRe E. E., An interactive multimedia satellite telemedicine service. IEEE Multimed. 76–83, 2000.

  15. http://www.eutelsat.org/home/index.html.

  16. Italsat Satellite Undergoes Tests in Toulouse, France. Space News 8–14, 1994.

  17. Lin, C. F., and Chang, K. T., A power assignment mechanism in Ka band OFDM-based multi-satellites mobile telemedicine. J. Med. Biol. Eng. 28(1):17–22, 2008.

    MathSciNet  Google Scholar 

  18. Pavlopoulos, S., Kyriacou, E., Berler, A., Dembeyiotis, S., and Koutsouris, D., A novel emergency telemedicine system based on wireless communication technology—AMBULANCE. IEEE Trans. Inf. Technol. Biomed. 2(4):261–267, 1998.

    Article  Google Scholar 

  19. Hung, K., and Zhang, Y. T., Implementation of a WAP-based telemedicine system for patient monitoring. IEEE Trans. Inf. Technol. Biomed. 7(2):101–107, 2003.

    Article  Google Scholar 

  20. Salvador, C. H., Carrasco, M. P., González, M. A., Carrero, A. M., Montes, J. M., Martín, L. S., Cavero, M. A., Lozano, I. F., and Monteagudo, J. L., Airmed-cardio: A GSM and internet services-based system for out-of-hospital follow-up of cardiac patients. IEEE Trans. Inf. Technol. Biomed. 9(1):73–85, 2005.

    Article  Google Scholar 

  21. Chu, Y., and Ganz, A., A mobile teletrauma system using 3G networks. IEEE Trans. Inf. Technol. Biomed. 452–456, 2004.

  22. Gállego, J. R., Ángela, H. S., Canales, M., Javier, J., Antonio, V., and Julián, F. N., Performance analysis of multiplexed medical data transmission for mobile emergency care over the UMTS channel. IEEE Trans. Inf. Technol. Biomed. 13-22, 2005.

  23. Lin, C. F., Chang, W. T., Lee, H. W., and Hung, S. I., Downlink power control in multi-code CDMA mobile medicine system. Med. Biol. Eng. Comput. 44:437–444, 2006.

    Article  Google Scholar 

  24. Niyato, D., Hossain, E., and Trlabsd, J. D., IEEE 802.16/WiMAX-based broadband wireless access and its application for telemedicine/E-health services. IEEE Wireless Communications 72–83, 2007.

  25. Lee, R. G., Chen, K. C., Hsiao, C. C., and Tseng, C. L., A mobile care system with alert mechanism. IEEE Trans. Inf. Technol. Biomed. 11(5):507–517, 2007.

    Article  Google Scholar 

  26. Lee, R. G., Hsiao, C. C., Chen, C. C., and Liu, M. H. A mobile-care system integrated with Bluetooth blood pressure and pulse monitor, and cellular phone. IEICE Trans. Inf. Syst. 1702–1711, 2006.

  27. Rasid, M. F. A., and Woodward, B., Bluetooth telemedicine processor for multichannel biomedical signal transmission via mobile cellular networks. IEEE Trans. Inf. Technol. Biomed. 9(1):35–43, 2005.

    Article  Google Scholar 

  28. Mundt, C. W., Montgomery, K. N., Udoh, U. E., Barker, V. N., Thonier, G. C., Tellier, A. M., Ricks, R. D., Darling, R. B., Cagle, Y. D., Cabrol, N. A., Ruoss, S. J., Swain, J. L., Hines, J. W., and Kovacs, G. T. A. A., Multiparameter wearable physiologic monitoring system for space and terrestrial application. IEEE Trans. Inf. Technol. Biomed. 9(3):382–391, 2005.

    Article  Google Scholar 

  29. Baker, S., and Hoglund, D., Medical-grade, mission-critical wireless networks. IEEE Eng. Med. Biol. Mag. 86–95, 2008.

  30. Lin, C. F., Hung, S. I., and Chiang, I. H., 802.11n WLAN transmission scheme for wireless telemedicine applications. Proc. Inst. Mech. Eng., H J. Eng. Med., 2010 (in press).

  31. Lin, C. F., and Li, C. Y., A DS UWB transmission system for wireless telemedicine. WSEAS Trans. Syst. 578–588, 2008.

  32. Namli, T., Aluc, G., and Dogac, A., An interoperability test framework for HL7-based systems. IEEE Trans. Inf. Technol. Biomed. 13(3):389–399, 2009.

    Article  Google Scholar 

  33. ebXML Messaging Services Profile. Available: http://www.hl7.org/v3ballot/html/infrastructure/transport.transportebxml.htm, 2009.

  34. Web Services Profile. Available: http://www.hl7.org/v3ballot2009jan/html/welcome/environment/index.htm, 2009.

  35. Minimal Lower Layer Protocol Profile. Available: http://www.hl7.org/v3ballot/html/infrasturcture/transport/transportmllp.htm, 2009.

  36. Lin, C. F., Chung, C. H., and Lin, J. H., A chaos-based visual encryption mechanism for clinical EEG signals. Med. Biol. Eng. Comput. 47(7):757–762, 2009.

    Article  Google Scholar 

  37. Lin, C. F., Chung, C. H., Chen, Z. L., Song, C. J., and Wang, Z. X., A chaos-based unequal encryption mechanism in wireless telemedicine with error decryption. WSEAS Trans. Syst. 49–55, 2008.

  38. Lin, C. F., Chang, W. T., and Li, C. Y., A chaos-based visual encryption mechanism in JPEG2000 medical images. J. Med. Biol. Eng. 27(3):144–149, 2007.

    Google Scholar 

  39. Lin, C. F., Yeh, S. W., Chien, Y. Y., Peng, T. I., Wang, J. H., and Chang, S. H., A HHT-based time frequency analysis scheme in clinical alcoholic EEG signals. WSEAS Transactions on Biology and Biomedicine 5(10):249–260, 2008.

    Google Scholar 

  40. Lin, C. F., Yeh, S. W., Chang, S. H., Peng, T. I., and Chien, Y. Y., An HHT-based time-frequency scheme for analyzing the EEG signals of clinical alcoholics medical information: Systems design, computerization, and applications. USA: Nova Science Publishers, 2010 (in press).

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the support of the Teacher Research Project of National Taiwan Ocean University 99b60201, National Taiwan Ocean University, Center for Marine Bioscience and Biotechnology, the grant from the National Science Council of Taiwan NSC 93-2218-e-019-024, and the valuable comments of the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chin-Feng Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, CF. Mobile Telemedicine: A Survey Study. J Med Syst 36, 511–520 (2012). https://doi.org/10.1007/s10916-010-9496-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-010-9496-x

Keywords

Navigation