Skip to main content

Advertisement

Log in

Mammographic Image Based Breast Tissue Classification with Kernel Self-optimized Fisher Discriminant for Breast Cancer Diagnosis

  • ORIGINAL PAPER
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Breast tissue classification is an important and effective way for computer aided diagnosis of breast cancer with digital mammogram. Current methods endure two problems, firstly pectoral muscle influences the classification performance owing to its texture similar to parenchyma, and secondly classification algorithms fail to deal with the nonlinear problem from the digital mammogram. For these problems, we propose a novel framework of breast tissue classification based on kernel self-optimized discriminant analysis combined with the artifacts and pectoral muscle removal with multi-level segmentation based Connected Component Labeling analysis. Experiments on mini-MIAS database are implemented to testify and evaluate the performance of proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang, X. H., Good, W. F., Chapman, B. E., Chang, Y. H., Poller, W. R., Chang, T. S., and Hardesty, L. A., Automated assessment of the composition of breast tissue revealed on tissue-thickness-corrected mammography. Am. J. Roentgenol. 180:227–262, 2003.

    Google Scholar 

  2. Muhimmah, I., and Zwiggelaar, R., “Mammographic density classification using multiresolution histogram information”, Proceedings of the International Special Topic Conference on Information Technology in Biomedicine, Ioannina, Greece, 2006

  3. Oliver, A., Freixenet, J., Marti, R., Pont, J., Perez, E., Denton, E. R. E., and Zwiggelaar, R., A novel breast tissue density classification methodology. IEEE Trans. Inf. Technol. Biomed. 12(1):55–65, 2008.

    Article  Google Scholar 

  4. Li, J. B., Pan, J. S., and Lu, Z. M., Kernel optimization-based discriminant analysis for face recognition. Neural Comput. Appl. 18(6):603–612, 2009.

    Article  Google Scholar 

  5. Suckling, J., Parker, J., Dance, D., Astley, S., Astley, I., Hutt, I., and Boggis, C., The mammographic images analysis society digital mammogram database. Exerpta Med. 1069:375–378, 1994.

    Google Scholar 

  6. Li, J.-B., Chu, S.-C., Pan, J.-S., and Ho, J.-H., Adaptive data-dependent matrix norm based Gaussian kernel for facial feature extraction. Int. J. Innovative Comput. Inf. Control. 3(5):1–10, 2007.

    Google Scholar 

  7. Sahbi, H., Kernel PCA for similarity invariant shape recognition. Neurocomput 70:3034–3045, 2007.

    Article  Google Scholar 

  8. Wu, M., Schölkopf, B., and Bakır, G., A direct method for building sparse kernel learning algorithms. J. Mach. Learn Res. 7:603–624, 2006.

    MathSciNet  MATH  Google Scholar 

  9. Mika, S., Ratsch, G., Weston, J., Schölkopf, B., and Muller, K.-R., Fisher discriminant analysis with kernels, in: Proceedings of IEEE International Workshop on Neural Networks for Signal Processing IX, pp. 41–48, 1999

  10. Schölkopf, B., Smola, A., and Muller, K. R., Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5):1299–1319, 1998.

    Article  Google Scholar 

  11. Tao, D., Tang, X., Li, X., and Wu, X., Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 28(7):1088–1099, 2006.

    Article  Google Scholar 

  12. Lu, J., Plataniotis, K. N., and Venetsanopoulos, A. N., Face recognition using kernel direct discriminant analysis algorithms. IEEE Trans. Neural Netw. 14(1):117–226, 2003.

    Article  Google Scholar 

  13. Yang, J., Frangi, A. F., Yang, J.-Y., Zhang, D., and Jin, Z., KPCA plus LDA: a complete kernel Fisher discriminant framework for feature extraction and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 27(2):230–244, 2005.

    Article  Google Scholar 

  14. Yeung, D.-Y., Chang, H., and Dai, G., Learning the kernel matrix by maximizing a KFD-based class separability criterion. Pattern Recogn. 40(7):2021–2028, 2007.

    Article  MATH  Google Scholar 

  15. Huang, J., Yuen, P. C., Chen, W.-S., and Lai, J. H., Kernel subspace LDA with optimized kernel parameters on face recognition, in: Proceedings of the Sixth IEEE International Conference on Automatic Face and Gesture Recognition, 2004.

  16. Chen, W.-S., Yuen, P. C., Huang, J., and Dai, D.-Q., Kernel machine-based one-parameter regularized fisher discriminant method for face recognition. IEEE Trans. Syst. Man. Cybern. B Cybern. 35(4):658–669, 2005.

    Google Scholar 

  17. Amari, S., and Wu, S., Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 12(6):783–789, 1999.

    Article  Google Scholar 

  18. Pan, J. S., Li, J. B., and Lu, Z. M., Adaptive quasiconformal Kernel discriminant analysis. Neurocomputing 71:2754–2760, 2008.

    Article  Google Scholar 

  19. Mohamad, M. S., Omatu, S., Yoshioka, M., and Deris, S., A three-stage method to select informative genes for cancer classification. Int. J. Innovative Comput. Inf. Control 6(1):117–126, 2010.

    Google Scholar 

  20. Mohamad, M. S., Omatu, S., Yoshioka, M., and Deris, S., A cyclic hybrid method to select a smaller subset of informative genes for cancer classification. Int. J. Innovative Comput. Inf. Control 5(8):2189–2202, 2009.

    Google Scholar 

  21. Mohamad, M. S., Omatu, S., Yoshioka, M., and Deris, S., A two-stage method to select a smaller subset of informative genes for cancer classification. Int. J. Innovative Comput. Inf. Control 5(10):2959–2968, 2009.

    Google Scholar 

  22. Pan, M., Tang, J., and Yang, X., An algorithm for medical image tilt correction using B-Spline and moment invariants. ICIC Express Lett. 4(1):57–64, 2010.

    Google Scholar 

  23. Zhou, C., Wei, X., Zhang, Q., and Wang, B., Image encryption based on DNA splicing system and henon model. ICIC Express Lett. 4(3B):1011–1018, 2010.

    Google Scholar 

  24. Arora, S., Bhattacharjee, D., Nasipuri, M., Basu, D. K., and Kundu, M., Complementary features combined in a MLP-based system to recognize handwritten devnagari character. J. Inf. Hiding Multimedia Signal Process. 2(1):71–77, 2011.

    Google Scholar 

  25. Parviz, M., and Shahram Moin, M., Boosting approach for score level fusion in multimodal biometrics based on AUC maximization. J. Inf. Hiding Multimedia Signal Process. 2(1):51–59, 2011.

    Google Scholar 

Download references

Acknowledgments

This work is supported by National Science Foundation of China under Grant No. 61001165 and Natural Science Foundation of Heilongjiang Province under Grant No. QC2010066.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Bao Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, JB. Mammographic Image Based Breast Tissue Classification with Kernel Self-optimized Fisher Discriminant for Breast Cancer Diagnosis. J Med Syst 36, 2235–2244 (2012). https://doi.org/10.1007/s10916-011-9691-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-011-9691-4

Keywords

Navigation