Skip to main content

Advertisement

Log in

Accurate Prediction of Coronary Artery Disease Using Reliable Diagnosis System

  • Original Paper
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper presents more accurate and reliable computational methods for aiding the treatment of people with coronary artery disease. New techniques are introduced for improved evaluation and distinguish cardiac disease affected patients from the healthy controls. Experiments are conducted with high level of error tolerance rate and confidence level at 95% and 99% and established the results with corrected T-tests based on comparison of various performance measures. Normal kernel density estimator is used for visual distinction of cardiac controls. A new ensemble learning method comprising of Bayesian network as classifier and Principal components method as the projection filter with ranker search is used for the relevant feature selection. Analysis of each model is performed and discusses major findings and concludes with promising results compared to the related works. Multiple Correspondence analysis is used for exploring heart disease variable’s relationships. Robust machine learning algorithms used are Rotation forests, MultiBoosting, Sparse multinomial logistic regression for better performance with fine tuning of their involved parameters. The work aims at improving the software reliability and quality of diagnosis of cardiac disease with robust inference system. To the best of our knowledge, from the literature survey, experimental results presented in this work show best results with supportive statistical inference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zahan, S., A fuzzy approach to computer-assisted myocardial ischemia diagnosis. Artif Intell Med 21(1–3):271–275, 2001.

    Article  Google Scholar 

  2. Mobley, B. A., Schechter, E., Moore, W. E., McKee, P. A., and Eichner, J. E., Predictions of coronary artery stenosis by artificial neural network. Artif Intell Med 18(3):187–203, 2000.

    Article  Google Scholar 

  3. Chesnokov, Y. V., Complexity and spectral analysis of the heart rate variability dynamics for distant prediction of paroxysmal atrial fibrillation with artificial intelligence methods. Artif Intell Med 43(2):151–165, 2008.

    Article  Google Scholar 

  4. Kukar, M., Kononenko, I., and Grošelj, C., Modern parameterization and explanation techniques in diagnostic decision support system: a case study in diagnostics of coronary artery disease. Artif Intell Med 52(2):77–90, 2011.

    Article  Google Scholar 

  5. Haddad, M., Adlassnig, K.-P., and Porenta, G., Feasibility analysis of a case-based reasoning system for automated detection of coronary heart disease from myocardial scintigrams. Artif Intell Med 9(1):61–78, 1997.

    Article  Google Scholar 

  6. Khorsand, A., Graf, S., Sochor, H., Schuster, E., and Porenta, G., Automated assessment of myocardial SPECT perfusion scintigraphy: a comparison of different approaches of case-based reasoning. Artif Intell Med 40(2):103–113, 2007.

    Article  Google Scholar 

  7. Long, W. J., Fraser, H., and Naimi, S., Reasoning requirements for diagnosis of heart disease. Artif Intell Med 10(1):5–24, 1997.

    Article  Google Scholar 

  8. Sacha, J. P., Goodenday, L. S., and Cios, K. J., Bayesian learning for cardiac SPECT image interpretation. Artif Intell Med 26(1–2):109–143, 2002.

    Article  Google Scholar 

  9. Hernández, A. I., Carrault, G., Mora, F., and Bardou, A., Model-based interpretation of cardiac beats by evolutionary algorithms: signal and model interaction. Artif Intell Med 26(3):211–235, 2002.

    Article  Google Scholar 

  10. Kurgan, L. A., Cios, K. J., Tadeusiewicz, R., Ogiela, M., and Goodenday, L. S., Knowledge discovery approach to automated cardiac SPECT diagnosis. Artif Intell Med 23(2):149–169, 2001.

    Article  Google Scholar 

  11. Augusto, J. C., Temporal reasoning for decision support in medicine. Artif Intell Med 33(1):1–24, 2005.

    Article  MathSciNet  Google Scholar 

  12. Denaï, M. A., Mahfouf, M., and Ross, J. J., A hybrid hierarchical decision support system for cardiac surgical intensive care patients. Part I: physiological modelling and decision support system design. Artif Intell Med 45(1):35–52, 2009.

    Article  Google Scholar 

  13. Cho, S., and Reggia, J. A., Multiple disorder diagnosis with adaptive competitive neural networks. Artif Intell Med 5(6):469–487, 1993.

    Article  Google Scholar 

  14. Chao, P.-K., Wang, C.-L., Chan, H.-L., An intelligent classifier for prognosis of cardiac resynchronization therapy based on speckle-tracking echocardiograms. Artif. Intell. Med., Available online 2 October 2011.

  15. Komorowski, J., and Øhrn, A., Modelling prognostic power of cardiac tests using rough sets. Artif Intell Med 15(2):167–191, 1999.

    Article  Google Scholar 

  16. Malik, M., Bigger, J. T., Camm, A. J., Kleiger, R. E., Malliani, A., Moss, A. J., and Schwartz, P. J., Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17(3):354–381, 1996.

    Article  Google Scholar 

  17. Saul, J. P., Arai, Y., Berger, R. D., Lilly, L. S., Colucci, W. S., and Cohen, R. J., Assessment of autonomic regulation in chronic congestive heart failure by heart rate spectral analysis. Am J Cardiol 61(15):1292–1299, 1988.

    Article  Google Scholar 

  18. Bigger, J. T., Fleiss, J. L., Steinman, R. C., Rolnitzky, L. M., Schneider, W. J., and Stein, P. K., RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart-disease or recent acute myocardial-infarction. Circulation 91(7):1936–1943, 1995.

    Article  Google Scholar 

  19. Casolo, G. C., Stroder, P., Sulla, A., Chelucci, A., Freni, A., and Zerauschek, M., Heart-rate-variability and functional severity of congestive heart- failure secondary to coronary-artery disease. Eur Heart J 16(3):360–367, 1995.

    Google Scholar 

  20. Ponikowski, P., Anker, S. D., Chua, T. P., Szelemej, R., Piepoli, M., Adamopoulos, S., WebbPeploe, K., Harrington, D., Banasiak, W., Wrabec, K., and Coats, A. J. S., Depressed heart rate variability as an independent predictor of death in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 79(12):1645–1650, 1997.

    Article  Google Scholar 

  21. Aronson, D., and Burger, A. J., Gender-related differences in modulation of heart rate in patients with congestive heart failure. J Cardiovasc Electrophysiol 11(10):1071–1077, 2000.

    Article  Google Scholar 

  22. Lucreziotti, S., Gavazzi, A., Scelsi, L., Inserra, C., Klersy, C., Campana, C., Ghio, S., Vanoli, E., and Tavazzi, L., Five-minute recording of heart rate variability in severe chronic heart failure: correlates with right ventricular function and prognostic implications. Am Heart J 139(6):1088–1095, 2000.

    Article  Google Scholar 

  23. Guzzetti, S., Magatelli, R., Borroni, E., and Mezzetti, S., Heart rate variability in chronic heart failure. Auton Neurosci 90(1–2):102–105, 2001.

    Article  Google Scholar 

  24. Mietus, J. E., Peng, C. K., Henry, I., Goldsmith, R. L., and Goldberger, A. L., The pNNx files: reexamining a widely used heart rate variability measure. Heart 88(4):378–380, 2002.

    Article  Google Scholar 

  25. La Rovere, M. T., Pinna, G. D., Maestri, R., Mortara, A., Capomolla, S., Febo, O., Ferrari, R., Franchini, M., Gnemmi, M., Opasich, C., Riccardi, P. G., Traversi, E., and Cobelli, F., Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 107(4):565–570, 2003.

    Article  Google Scholar 

  26. Musialik-Lydka, A., Sredniawa, B., and Pasyk, S., Heart rate variability in heart failure. Kardiol Pol 58(1):10–16, 2003.

    Google Scholar 

  27. Moore, R. K. G., Groves, D., Kearney, M. T., Eckberg, D. L., Callahan, T. S., Shell, W. E., Fox, K. A. A., and Nolan, J. F., HRV spectral power and mortality in chronic heart failure (CHF): 5 year results of the UK heart study. Heart 90:A6, 2004.

    Article  Google Scholar 

  28. Arbolishvili, G. N., Mareev, V. Y., Orlova, Y. A., and Belenkov, Y. N., Heart rate variability in chronic heart failure and its role in prognosis of the disease. Kardiologiya 46(12):4–11, 2006.

    Google Scholar 

  29. Kikuya, M., Ohkubo, T., Metoki, H., Asayama, K., Hara, A., Obara, T., Inoue, R., Hoshi, H., Hashimoto, J., Totsune, K., Satoh, H., and Imai, Y., Dayby- day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension 52(6):1045–1050, 2008.

    Article  Google Scholar 

  30. Smilde, T. D. J., van Veldhuisen, D. J., and van den Berg, M. P., Prognostic value of heart rate variability and ventricular arrhythmias during 13-year follow-up in patients with mild to moderate heart failure. Clin Res Cardiol 98(4):233–239, 2009.

    Article  Google Scholar 

  31. Mosterd, A., Hoes, A. W., de Bruyne, M. C., Deckers, J. W., Linker, D. T., Hofman, A., and Grobbee, D. E., Prevalence of heart failure and left ventricular dysfunction in the general population: the Rotterdam Study. Eur Heart J 20(6):447–455, 1999.

    Article  Google Scholar 

  32. Vallejo, M., Marquez, M. F., Borja-Aburto, V. H., Cardenas, M., and Hermosillo, A. G., Age, body mass index, and menstrual cycle influence young women’s heart rate variability—a multivariable analysis. Clin Auton Res 15(4):292–298, 2005.

    Article  Google Scholar 

  33. Bilchick, K. C., and Berger, R. D., Heart rate variability. J Cardiovasc Electrophysiol 17(6):691–694, 2006.

    Article  Google Scholar 

  34. Merz, N. B., Assessment of patients at intermediate cardiac risk. Am J Cardiol 96(Suppl):2J–10J, 2005.

    Article  Google Scholar 

  35. Koji, Y., Tomiyama, H., Ischihashi, H., Nagae, T., Tanaka, N., Takazawa, K., Ishimaru, S., and Yamashima, A., Comparison of ankle-brachial pressure index and pulse wave velocity as markers of the presence of CAD in subjects with a high-risk of atherosclerosic cardiovascular disease. Am J Cardiol 94:868–872, 2004.

    Article  Google Scholar 

  36. Park, Y.-J., Chun, S.-H., Kim, B.-C., Cost-sensitive case-based reasoning using a genetic algorithm: application to medical diagnosis. Artif. Intell. Med. 51(2):133–145, ISSN 0933-3657, February 2011.

  37. Brown, G., Diversity in neural network ensembles. The University of Birmingham, 2004.

  38. Kononenko, I., Simec, E., Robnik-Sikonja, M., Overcoming the myopia of inductive learning algorithms with RELIEFF. Appl. Intell. 7, 1997.

  39. Smirnova, E., Sprinkhuizen-Kuyper, I. G., Nalbantis, I., Erim, B., and Universiteit Rotterdam, Unanimous Voting using Support Vector Machines. IKAT, Universiteit Maastricht.

  40. Seewald, A. K., Dissertation towards understanding stacking studies of a general ensemble learning scheme ausgefuhrt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Naturwissenschaften.

  41. Freund, Y., Schapire, R. E., Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148–156, 1996.

  42. Webb, G. I., MultiBoosting: a technique for combining boosting and wagging. Mach. Learn. 40(No.2), 2000.

  43. Friedman, J., Hastie, T., and Tibshirani, R., Additive logistic regression: a statistical view of boosting. Ann Stat 38(2):337–374, 2000.

    Article  MathSciNet  Google Scholar 

  44. Zheng, S., QBoost: predicting quantiles with boosting for regression and binary classification. Expert. Syst. Appl., July 2011.

  45. Kim, H.-J., Kim, J.-U., and Ra, Y.-G., Boosting naive bayes text classification using uncertainty-based selective sampling. Neurocomputing 67:403–410, 2005.

    Article  Google Scholar 

  46. Wang, G., and Ma, J., Study of corporate credit risk prediction based on integrating boosting and random subspace. Expert Syst Appl 38(11):13871–13878, 2011.

    Google Scholar 

  47. Zhang, C., Cai, Q., and Song, Y., Boosting with pairwise constraints. Neurocomputing 73(4–6):908–919, 2010.

    Article  Google Scholar 

  48. Liu, H., Liu, L., and Zhang, H., Boosting feature selection using information metric for classification. Neurocomputing 73(1–3):295–303, 2009.

    Article  Google Scholar 

  49. Deypir, M., Alizadeh, S., Zoughi, T., and Boostani, R., Boosting a multi-linear classifier with application to visual lip reading. Expert Syst Appl 38(1):941–948, 2011.

    Article  Google Scholar 

  50. García-Pedrajas, N., and Ortiz-Boyer, D., Boosting k-nearest neighbor classifier by means of input space projection. Expert Syst Appl 36(7):10570–10582, 2009.

    Article  Google Scholar 

  51. Zheng, J., Cost-sensitive boosting neural networks for software defect prediction. Expert Syst Appl 37(6):4537–4543, 2010.

    Article  Google Scholar 

  52. Kim, Y. S., Boosting and measuring the performance of ensembles for a successful database marketing. Expert Syst Appl 36(2):2161–2176, 2009. Part 1.

    Article  Google Scholar 

  53. Bielza, C., Robles, V., and Larrañaga, P., Regularized logistic regression without a penalty term: an application to cancer classification with microarray data. Expert Syst Appl 38(5):5110–5118, 2011.

    Article  Google Scholar 

  54. Nie, G., Rowe, W., Zhang, L., Tian, Y., and Shi, Y., Credit card churn forecasting by logistic regression and decision tree. Expert Syst Appl 38(12):15273–15285, 2011.

    Article  Google Scholar 

  55. Rodriguez, J. J., Kuncheva, L. I., and Alonso, C. J., Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10):1619–1630, 2006.

    Article  Google Scholar 

  56. Liu, K.-H., and Huang, D.-S., Cancer classification using rotation forest. Comput Biol Med 38(5):601–610, 2008.

    Article  Google Scholar 

  57. Ozcift, A., and Gulten, A., Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput. Meth. Programs Biomed.

  58. Takemura, A., Shimizu, A., and Hamamoto, K., Discrimination of breast tumors in ultrasonic images using an ensemble classifier based on the adaboost algorithm with feature selection. IEEE Trans Med Imaging 29(3):598–609, 2010.

    Article  Google Scholar 

  59. Yu, Z., Deng, Z., Wong, H.-S., and Tan, L., Identifying protein-kinase-specific phosphorylation sites based on the bagging–adaboost ensemble approach. IEEE Trans NanoBioscience 9(2):132–143, 2010.

    Article  Google Scholar 

  60. Ture, M., Tokatli, F., and Kurt, I., Using Kaplan–Meier analysis together with decision tree methods (C&RT, CHAID, QUEST, C4.5 and ID3) in determining recurrence-free survival of breast cancer patients. Expert Syst Appl 36(2):2017–2026, 2009. Part 1.

    Article  Google Scholar 

  61. McCarty, J. A., and Hastak, M., Segmentation approaches in data-mining: a comparison of RFM, CHAID, and logistic regression. J Bus Res 60(6):656–662, 2007.

    Article  Google Scholar 

  62. Kawaguchi, S., and Nishii, R., Hyperspectral image classification by bootstrap AdaBoost with random decision stumps. IEEE Trans Geosci Remote Sens 45(11):3845–3851, 2007.

    Article  Google Scholar 

  63. Gregorcic, G., and Lightbody, G., Gaussian process approach for modelling of nonlinear systems. Eng Appl Artif Intell 22(4–5):522–533, 2009.

    Article  Google Scholar 

  64. Chatzis, S. P., and Demiris, Y., Echo state Gaussian process. IEEE Trans Neural Network 22(9):1435–1445, 2011.

    Article  Google Scholar 

  65. Pillonetto, G., Dinuzzo, F., and De Nicolao, G., Bayesian online multitask learning of Gaussian processes. IEEE Trans Pattern Anal Mach Intell 32(2):193–205, 2010.

    Article  Google Scholar 

  66. Han, M., Fan, J., and Wang, J., A dynamic feedforward neural network based on Gaussian particle swarm optimization and its application for predictive control. IEEE Trans Neural Network 22(9):1457–1468, 2011.

    Article  Google Scholar 

  67. Milpied, P., Dubois, R., Roussel, P., Henry, C., and Dreyfus, G., Arrhythmia discrimination in implantable cardioverter defibrillators using support vector machines applied to a new representation of electrograms. IEEE Trans Biomed Eng 58(6):1797–1803, 2011.

    Article  Google Scholar 

  68. Shao, Y.-H., Zhang, C.-H., Wang, X.-B., Deng, N.-Y., “Improvements on twin support vector machines”. IEEE Trans. Neural. Network. 22(6), June 2011.

  69. Chisci, L., Mavino, A., Perferi, G., Sciandrone, M., Anile, C., Colicchio, G., Fuggetta, F., “Real-time epileptic seizure prediction using AR models and support vector machines”. IEEE Trans. Med. Imag. 57(5), May 2010.

  70. Artan, Y., Haider, M. A., Langer, D. L., van der Kwast, T. H., Evans, A. J., Yang, Y., Wernick, M. N., Trachtenberg, J., and Yetik, I. S., Prostate cancer localization with multispectral MRI using cost-sensitive support vector machines and conditional random fields. IEEE Trans Image Process 19(9):2444–2455, 2010.

    Article  MathSciNet  Google Scholar 

  71. Bruzzone, L., Chi, M., and Marconcini, M., A novel transductive SVM for the semisupervised classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11):3363–3373, 2006.

    Article  Google Scholar 

  72. Stoean, R., Stoean, C., Lupsor, M., Stefanescu, H., and Badea, R., Evolutionary-driven support vector machines for determining the degree of liver fibrosis in chronic hepatitis C. Artif Intell Med 51(1):53–65, 2011.

    Article  Google Scholar 

  73. Asl, B. M., Setarehdan, S. K., and Mohebbi, M., Support vector machine-based arrhythmia classification using reduced features of heart rate variability signal. Artif Intell Med 44(1):51–64, 2008.

    Article  Google Scholar 

  74. Chen, Z., Li, J., and Wei, L., A multiple kernel support vector machine scheme for feature selection and rule extraction from gene expression data of cancer tissue. Artif Intell Med 41(2):161–175, 2007.

    Article  Google Scholar 

  75. Huang, T. M., and Kecman, V., Gene extraction for cancer diagnosis by support vector machines—an improvement. Artif Intell Med 35(1–2):185–194, 2005.

    Article  Google Scholar 

  76. Cortes, C., and Vapnik, V., Support vector networks. Mach Learn 20:273–297, 1995.

    MATH  Google Scholar 

  77. Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M., and Haussler, D., Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16:906–914, 2000.

    Article  Google Scholar 

  78. Takeuchi, K., and Collier, N., Bio-medical entity extraction using support vector machines. Artif Intell Med 33:125–137, 2005.

    Article  Google Scholar 

  79. Cohen, G., Hilario, M., Sax, H., Hugonnet, S., and Geissbuhler, A., Learning from imbalanced data in surveillance of nosocomial infection. Artif Intell Med 37:7–18, 2006.

    Article  Google Scholar 

  80. Mavroforakis, M. E., Georgiou, H. V., Dimitropuoulos, N., Cavouras, D., and Theodoridis, S., Mammographic masses characterization based on localized texture and dataset fractal analysis using linear, neural and support vector machine classifiers. Artif Intell Med 37:145–162, 2006.

    Article  Google Scholar 

  81. Arodz, T., Kurdziel, M., Sevre, E. O. D., and Yuen, D. A., Pattern recognition techniques for automatic detection of suspicious-looking anomalies in mammograms. Comput Meth Programs Biomed 79:135–149, 2005.

    Article  Google Scholar 

  82. Ramirez, L., Durdle, N. G., Raso, V. J., and Hill, D. L., A support vector machines classifier to assess the severity of idiopathic scoliosis from surface topology. IEEE Trans Inf Technol Biomed 10(1):84–91, 2006.

    Article  Google Scholar 

  83. Guyon, I., and Elisseeff, A., An introduction to variable and feature selection. J Mach Learn Res 3:1157–1182, 2003.

    MATH  Google Scholar 

  84. Hsu, C.-W., and Lin, C.-J., A comparison of methods for multi-class support vector machines. IEEE Trans Neural Network 13(2):415–425, 2002.

    Article  Google Scholar 

  85. Weber, F. M., Keller, D. U. J., Bauer, S., Seemann, G., Lorenz, C., and Dössel, O., Predicting tissue conductivity influences on body surface potentials—an efficient approach based on principal component analysis. IEEE Trans Biomed Eng 58(2):265–273, 2011.

    Article  Google Scholar 

  86. Langley, P., Bowers, E. J., and Murray, A., Principal component analysis as a tool for analyzing beat-to-beat changes in ECG features: application to ECG-derived respiration. IEEE Trans Biomed Eng 57(4):821–829, 2010.

    Article  Google Scholar 

  87. Li, X.-L., Adali, T., and Anderson, M., Noncircular principal component analysis and its application to model selection. IEEE Trans Signal Process 59(10):4516–4528, 2011.

    Article  MathSciNet  Google Scholar 

  88. Liu, X., Liu, F., and Bai, J., A linear correction for principal component analysis of dynamic fluorescence diffuse optical tomography images. IEEE Trans Biomed Eng 58(6):1602–1611, 2011.

    Article  Google Scholar 

  89. Baskaran, V., Guergachi, A., Bali, R. K., and Naguib, R. N. G., Predicting breast screening attendance using machine learning techniques. IEEE Trans Inf Technol Biomed 15(2):251–259, 2011.

    Article  Google Scholar 

  90. Mandal, I., “Software reliability assessment using artificial neural network”. International Conference and Workshop on Emerging Trends in Technology, February 2010, ACM New York, NY, USA ©2010, Pages: 698–699

  91. de Jesús Rubio, J., Angelov, P., and Pacheco, J., Uniformly stable backpropagation algorithm to train a feedforward neural network. IEEE Trans Neural Network 22(3):356–366, 2011.

    Article  Google Scholar 

  92. Razavi, S., and Tolson, B. A., A new formulation for feedforward neural networks. IEEE Trans Neural Network 22(10):1588–1598, 2011.

    Article  Google Scholar 

  93. Mandal, I., and Sairam, N., “Enhanced classification performance using computational intelligence”. The First International conference on Computer Science and Information Technology (CCSEIT-2011).

  94. Hasan Örkcü, H., and Bal, H., Comparing performances of backpropagation and genetic algorithms in the data classification. Expert Syst Appl 38(4):3703–3709, 2011.

    Article  Google Scholar 

  95. Flores, M. J., Nicholson, A. E., Brunskill, A., Korb, K. B., and Mascaro, S., Incorporating expert knowledge when learning Bayesian network structure: a medical case study. Artif Intell Med 53(3):181–204, 2011.

    Article  Google Scholar 

  96. Štajduhar, I., Dalbelo-Bašic, B., and Bogunovic, N., Impact of censoring on learning Bayesian networks in survival modelling. Artif Intell Med 47(3):199–217, 2009.

    Article  Google Scholar 

  97. Krishnapuram, B., Hartemink, A., Carin, L., and Figueiredo, M., A Bayesian approach to joint feature selection and classifier design. IEEE Trans Pattern Anal Mach Intell 26:1105–1111, 2004.

    Article  Google Scholar 

  98. Lin, J.-H., and Haug, P. J., Exploiting missing clinical data in Bayesian network modeling for predicting medical problems. J Biomed Informat 41(1):1–14, 2008.

    Article  Google Scholar 

  99. Zhong, P., Zhang, P., Wang, R., “Dynamic learning of SMLR for feature selection and classification of hyperspectral data”. IEEE Geosci. Rem. Sens. Lett. 5(2), April 2008.

  100. Bohning, D., Multinomial logistic regression algorithm. Ann Inst Stat Math 44(1):197–200, 1992.

    Article  MathSciNet  Google Scholar 

  101. Li, J., Bioucas-Dias, J. M., Plaza, A., “Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning”. IEEE Trans. Geosci. Rem. Sens. 48(11), Nov. 2010.

  102. Gutiérrez, P. A., Hervás-Martínez, C., Martínez-Estudillo, F. J., “Logistic regression by means of evolutionary radial basis function neural networks”. IEEE Trans. Neural. Network. 22(2), Feb. 2011.

  103. Krishnapuram, B., Carin, L., Figueiredo, M. A. T., Hartemink, A. J., “Sparse multinomial logistic regression: fast algorithms and generalization bounds”. IEEE Trans. Pattern. Anal. Mach. Intell. 27(6), June 2005.

  104. Cheng, Q., Varshney, P. K., Arora, M. K., “Logistic regression for feature selection and soft classification of remote sensing data”. IEEE Geosci. Rem. Sens. Lett. 3(4), Oct 2006.

  105. Hervás-Martínez, C., Martínez-Estudillo, F. J., and Carbonero-Ruz, M., Multilogistic regression by means of evolutionary product-unit neural networks. Neural Netw 21(7):951–961, 2008.

    Article  Google Scholar 

  106. Keerthi, S. S., Duan, K. B., Shevade, S. K., and Poo, A. N., A fast dual algorithm for kernel logistic regression. Mach Learn 61(1–3):151–165, 2005.

    Article  MATH  Google Scholar 

  107. Subrahmanya, N., and Shin, Y., Sparse multiple kernel learning for signal processing applications. IEEE Trans Pattern Anal Mach Intell 32(5):788–798, 2010.

    Article  Google Scholar 

  108. Camps-Valls, G., and Bruzzone, L., Kernel-based methods for hyperspectral image classification. IEEE Trans Geosci Remote Sens 43(6):1351–1362, 2005.

    Article  Google Scholar 

  109. Fauvel, M., Benediktsson, J., Chanussot, J., and Sveinsson, J., Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles. IEEE Trans Geosci Remote Sens 46(11):3804–3814, 2008.

    Article  Google Scholar 

  110. Filippone, M., and Sanguinetti, G., Approximate inference of the bandwidth in multivariate kernel density estimation. Comput Stat Data Anal 55(12):3104–3122, 2011.

    Article  MathSciNet  Google Scholar 

  111. Li, Z., Jiang, P., Ma, H., Yang, J., and Tang, D. M., A model for dynamic object segmentation with kernel density estimation based on gradient features. Imag Vis Comput 27(6):817–823, 2009.

    Article  Google Scholar 

  112. Hu, S., Poskitt, D. S., Zhang, X., Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions. Comput. Stat. Data Anal., 2011.

  113. Bouezmarni, T., and Rombouts, J. V. K., Nonparametric density estimation for multivariate bounded data. J Stat Plann Infer 140(1):139–152, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  114. Masry, E., Probability density estimation from sampled data. IEEE Trans Inf Theory IT-29(5):697–709, 1983.

    MathSciNet  Google Scholar 

  115. Buchtala, O., Klimek, M., and Sick, B., Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Trans Syst Man Cybern B Cybern 35(5):928–947, 2005.

    Article  Google Scholar 

  116. Oyang, Y.-J., Hwang, S.-C., Ou, Y.-Y., Chen, C.-Y., and Chen, Z.-W., Data classification with radial basis function network based on a novel kernel density estimation algorithm. IEEE Trans Neural Network 16(1):225–236, 2005.

    Article  Google Scholar 

  117. Jessup, M., Abraham, W. T., Casey, D. E., Feldman, A. M., Francis, G. S., Ganiats, T. G., Konstam, M. A., Mancini, D. M., Rahko, P. S., Silver, M. A., Stevenson, L. W., Yancy, C. W., Hunt, S. A., Chin, M. H., Comm, H. F. W., and Members, W. C., Focused update: ACCF/AHA guidelines for the diagnosis and management of heart failure in adults a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 119(14):1977–2016, 2009.

    Article  Google Scholar 

  118. Pearson, T. A., Blair, S. N., Daniels, S. R., Eckel, R. H., Fair, J. M., Fortmann, S. P., Franklin, B. A., Goldstein, L. B., Greenland, Ph, Grundy, S. M., Hong, Y., Miller, N. H., Lauer, R. M., Ockene, I. S., Sacco, R. L., Sallis, J. F., Smith, S. C., Stone, N. J., and Taubert, K. A., AHA guidelines for primary prevention of cardiovascular disease and stroke. Circulation 106(3):388–391, 2002.

    Article  Google Scholar 

  119. Pouladian, M., Golpayegani, M. R. H., Tehrani-Fard, A. A., and Bubvay-Nejad, M., Noninvasive detection of coronary artery disease by arteriooscillography. IEEE Trans Biomed Eng 52(4):743–747, 2005.

    Article  Google Scholar 

  120. Güler, I., and Übeyli, E. D., Automated diagnostic systems with diverse and composite features for Doppler ultrasound signals. IEEE Trans Biomed Eng 53(10):1934–1942, 2006.

    Article  Google Scholar 

  121. Lapuerta, P., Azen, S. P., and Labree, L., Use of neural networks in predicting the risk of coronary artery disease. Comput Biomed Res 28:38–52, 1995.

    Article  Google Scholar 

  122. Raff, G. L., Gallagher, M. J., O’Neill, W. W., and Goldstein, J. A., Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46(3):552–557, 2005.

    Article  Google Scholar 

  123. Cerqueira, M. D., Weissman, N. J., Dilsizian, V., Jacobs, A. K., Kaul, S., Laskey, W. K., Pennell, D. J., Rumberger, J. A., Ryan, T., and Verani, M. S., Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 105:539–542, 2002.

    Article  Google Scholar 

  124. Danias, P. G., Roussakis, A., and Ioannidis, J. P., Diagnostic performance of coronary magnetic resonance angiography as compared against conventional X-ray angiography: a meta-analysis. J Am Coll Cardiol 44(9):1867–1876, 2004.

    Google Scholar 

  125. Plein, S., Radjenovic, A., Ridgway, J. P., Barmby, D., Greenwood, J. P., Ball, S. G., and Sivananthan, M. U., Coronary artery disease: myocardial perfusion MR imaging with sensitivity encoding versus conventional angiography. Radiology 235(2):423–430, 2005.

    Article  Google Scholar 

  126. Pavlopoulos, S. A., Stasis, A. Ch., and Loukis, E. N., A decision tree based method for the differential diagnosis of aortic stenosis from mitral regurgitation using heart sounds. Biomed Eng Online 3:21, 2004.

    Article  Google Scholar 

  127. Podgorelec, V., Kokol, P., Stiglic, B., and Rozman, I., Decision trees: an overview and their use in medicine. J Med Syst 26(5):445–463, 2002.

    Article  Google Scholar 

  128. Karaolis, M. A., Moutiris, J. A., Hadjipanayi, D., and Pattichis, C. S., Assessment of the risk factors of coronary heart events based on data mining with decision trees. IEEE Trans Inf Technol Biomed 14(3):559–566, 2010.

    Article  Google Scholar 

  129. Cai, K.-Y., Cao, P., Dong, Z., and Liu, K., Mathematical modeling of software reliability testing with imperfect debugging. Comput Math Appl 59(10):3245–3285, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  130. Li, X., Xie, M., and Ng, S. H., Sensitivity analysis of release time of software reliability models incorporating testing effort with multiple change-points. Appl Math Model 34(11):3560–3570, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  131. Patra, P. S. K., Sahu, D. P., Mandal, I., “An expert system for diagnosis of human diseases”. Int. J. Comput. Appl. 1(13), 2010.

  132. British Heart Foundation. (2008, Mar. 8). European cardiovascular disease statistics. [Online]. Available: http://www.heartstats.org/datapage.asp?id=7683

  133. Euroaspire Study Group, A European Society of Cardiology survey of secondary prevention of coronary heart disease: principal results. Eur Heart J 18:1569–1582, 1997.

    Article  Google Scholar 

  134. Euroaspire II Study Group, Lifestyle and risk factor management and use of drug therapies in coronary patients from 15 countries. Eur Heart J 22:554–572, 2002.

    Google Scholar 

  135. Euroaspire Study Group, Euroaspire III: a survey on the lifestyle, risk factors and use of cardioprotective drug therapies in coronary patients from 22 European countries. Eur J Cardiovasc Prev Rehabil 16(2):121–137, 2009.

    Article  Google Scholar 

  136. Wang, Z., and Hoy, W. E., Is the Framingham coronary heart disease absolute risk function applicable to Aboriginal people? Med J Aust 182(2):66–69, 2005.

    Google Scholar 

  137. Brindle, P., Emberson, J., Lampe, F., Walker, M., Whincup, P., Fahey, T., and Ebrahim, S., Predictive accuracy of the Framingham coronary risk score in British men: prospective cohort study. Br Med Assoc 327:1267–1270, 2003.

    Google Scholar 

  138. Sheridan, S., Pignone, M., and Mulrow, C., Framingham-based tools to calculate the global risk of coronary heart disease: a systematic review of tools for clinicians. J Gen Intern Med 18(12):1060–1061, 2003.

    Article  Google Scholar 

  139. Grundy, S. M., Pasternak, R., Greenland, P., Smith, S., and Fuster, V., Assessment of cardiovascular risk by use of multiple-risk-factor assessment equations. Am Heart Assoc 100:1481–1492, 1999.

    Google Scholar 

  140. Gamberger, D., and R. Bo?skovi´c Institute, Zarageb, Croatia, “Medical prevention: Targeting high-risk groups for coronary heart disease,” Sol-EU-Net: Data Mining Decision Support [Online]. Available: http://soleunet.ijs.si/website/other/case_solutions/CHD.pdf

  141. Pena-Reyes, C. A., Evolutionary fuzzy modeling human diagnostic decisions. Ann New York Acad Sci 1020:190–211, 2004.

    Article  Google Scholar 

  142. Rea, T. D., Heckbert, S. R., Kaplan, R. C., Smith, N. L., Lemaitre, R. N., and Psaty, B. M., Smoking status and risk for recurrent coronary events after myocardial infraction. Ann Intern Med 137:494–500, 2002.

    Google Scholar 

  143. Park, J. H., Im, K. H., Shin, C.-K., and Park, S. C., MBNR: case-based reasoning with local feature weighting by neural network. Appl Intell 210(3):265–276, 2004.

    Article  Google Scholar 

  144. Termeer, M., Bescos, J. O., Breeuwer, M., Vilanova, A., Gerritsen, F., and Groller, M. E., CoViCAD: comprehensive visualization of coronary artery disease. IEEE Trans Vis Comput Graph 13(6):1632–1639, 2007.

    Article  Google Scholar 

  145. Cho, B. H., Yu, H., Lee, J., Chee, Y. J., In: Kim, Y., Kim, S. I., “Nonlinear support vector machine visualization for risk factor analysis using nomograms and localized radial basis function kernels”. IEEE Transactions on Information Technology in Biomedicine 2008, Volume: 12, Issue: 2, Page(s):247–256

  146. Chi, C.-L., Street, W. N., Katz, D. A., A decision support system for cost-effective diagnosis. Artif. Intell. Med. 50(3):149–161, ISSN 0933-3657, 10.1016/j.artmed.2010.08.001, 2010.

    Google Scholar 

  147. Shortliffe, E. H., Davis, R., Axline, S. G., Buchanan, B. G., Green, C. C., and Cohen, S. N., Computer based consultations in clinical therapeutics: explanation and rule acquition capabilities of the MYCIN system. Comput Biomed Res 80(4):303–320, 1975.

    Article  Google Scholar 

  148. Watson, I. D., Basden, A., and Brandon, P. S., The client centered approach: expert system maintenance. Expert Syst 90(4):189–196, 1992.

    Article  Google Scholar 

  149. Coenen, F., and Bench-Capon, T. J. M., Maintenance and maintainability in regulation based systems. ICL Tech. J. 76–84, 1992.

  150. Chi, C.-L., Street, W. N., and Ward, M. M., Building a hospital referral expert system with a prediction and optimization-based decision support system algorithm. J Biomed Informat 410(2):371–386, 2008.

    Article  Google Scholar 

  151. Tsipouras, M. G., Voglis, C., and Fotiadis, D. I., A framework for fuzzy expert system creation- application to cardiovascular diseases. IEEE Trans Biomed Eng 54(11):2089–2105, 2007.

    Article  Google Scholar 

  152. Tsipouras, M. G., Exarchos, T. P., Fotiadis, D. I., Kotsia, A. P., Vakalis, K. V., Naka, K. K., and Michalis, L. K., Automated diagnosis of coronary artery disease based on data mining and fuzzy modeling. IEEE Trans Inf Technol Biomed 12(4):447–458, 2008.

    Article  Google Scholar 

  153. Boegl, K., Adlassnig, K.-P., Hayashi, Y., Rothenfluh, T. E., and Leitich, H., Knowledge acquisition in the fuzzy knowledge representation framework of a medical consultation system. Artif Intell Med 30(1):1–26, 2004.

    Article  Google Scholar 

  154. Polat, K., Sahan, S., Kodaz, H., and Guenes, S., A hybrid approach to medical decision support systems: combining feature selection, fuzzy weighted pre-processing and AIRS. Comput Meth Programs Biomed 88(2):164–174, 2007.

    Article  Google Scholar 

  155. Swets, J. A., Measuring the accuracy of diagnostic systems. Science 240(4857):1285–1293, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  156. Shah, M., Marchand, M., Corbeil, J., “Feature selection with conjunctions of decision stumps and learning from microarray data”. IEEE Trans. Pattern. Anal. Mach. Intell. (99): 1, 2011.

Download references

Conflict of interest statement

We (authors) declare that there is no conflict of interest in terms of financial and personal relationships with other people or organisations that could inappropriately influence (bias) our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indrajit Mandal.

Additional information

SUMMARY

Objective: The aim of this work is to improve the quality of present state of art of diagnosis of Coronary Artery disease patients and prevent the delay and misdiagnosis of patients using proposed robust inference system. The research work addresses the drawbacks inherited by the existing medical decision support systems and performance comparisons are based on specificity, sensitivity, accuracy and other measurable parameters. The system consists of highly robust algorithms for training purpose and finally the output is given by the Bayes Voting Classifier-Kernel Density Estimate Analyzer (BVC-KDE). It addresses the problem of correctly predicting the onset of CAD.

Methods: The robust methods of treating CAD including sparse multinomial logistic regression, Rotation forest ensemble with Support Vector Machines and Principal Components analysis, Artificial Neural Networks, CHAID decision tree, Gaussian process, Boosting methods and other machine learning models. For relevant feature selection Rotation Forest is used consisting of Bayesian network and Genetic algorithm with PCA as projection filter and attribute ranking is obtained with ranker search algorithm. Experiments are performed with confidence level of 95% and 99% along with Corrected T-tests (two tailed).

Results: The results obtained in this work are better and compared with the existing literatures available on the same problem. The highest accuracy obtained by AdaBoost algorithm is 97.619%. To the best of our knowledge, from the literature survey, experimental results presented in this work show best results with supportive statistical inference. Research has shown that several non-invasive features are highly correlated and this finding is confirmed in this study using factor analysis.

Conclusion: We have conducted the experiments using robust and reliable machine learning models choosing steep parameters for distinguishing CAD patients from healthy individuals based on the non invasive measurable features. It paves a new path for the telemonitoring of Coronary heart disease patients based on non-invasive measurable features and can be extended over other diseases as a future work. This work shows a high degree of software reliability and quality of the medical inference system.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, I., Sairam, N. Accurate Prediction of Coronary Artery Disease Using Reliable Diagnosis System. J Med Syst 36, 3353–3373 (2012). https://doi.org/10.1007/s10916-012-9828-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10916-012-9828-0

Keywords

Navigation