Skip to main content

Advertisement

Log in

QoS-Aware Health Monitoring System Using Cloud-Based WBANs

  • Systems-Level Quality Improvement
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Wireless Body Area Networks (WBANs) are amongst the best options for remote health monitoring. However, as standalone systems WBANs have many limitations due to the large amount of processed data, mobility of monitored users, and the network coverage area. Integrating WBANs with cloud computing provides effective solutions to these problems and promotes the performance of WBANs based systems. Accordingly, in this paper we propose a cloud-based real-time remote health monitoring system for tracking the health status of non-hospitalized patients while practicing their daily activities. Compared with existing cloud-based WBAN frameworks, we divide the cloud into local one, that includes the monitored users and local medical staff, and a global one that includes the outer world. The performance of the proposed framework is optimized by reducing congestion, interference, and data delivery delay while supporting users’ mobility. Several novel techniques and algorithms are proposed to accomplish our objective. First, the concept of data classification and aggregation is utilized to avoid clogging the network with unnecessary data traffic. Second, a dynamic channel assignment policy is developed to distribute the WBANs associated with the users on the available frequency channels to manage interference. Third, a delay-aware routing metric is proposed to be used by the local cloud in its multi-hop communication to speed up the reporting process of the health-related data. Fourth, the delay-aware metric is further utilized by the association protocols used by the WBANs to connect with the local cloud. Finally, the system with all the proposed techniques and algorithms is evaluated using extensive ns-2 simulations. The simulation results show superior performance of the proposed architecture in optimizing the end-to-end delay, handling the increased interference levels, maximizing the network capacity, and tracking user’s mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Multi-interface support for ns-2. http://personales.unican.es/aguerocr/files/ucMultiIfacesSupport.pdf

  2. Wireless update patch for ns-2. http://www.telematica.polito.it/fiore/

  3. Ieee std 802.15.4-2006. http://standards.ieee.org/findstds/standard/802.15.4-2006.html, 2006.

  4. Ieee std 802.15.6-2012. http://standards.ieee.org/findstds/standard/802.15.6-2012.html, 2012.

  5. Ahmed, K., and Gregory, M.: Integrating wireless sensor networks with cloud computing. In: Seventh International Conference on Mobile Ad-hoc and Sensor Networks (MSN), 2011, pp. 364–366. IEEE, 2011.

  6. Ahnn, J.H., and Potkonjak, M., mhealthmon: Toward energy-efficient and distributed mobile health monitoring using parallel offloading. J. Med. Syst. 37(5):1–11, 2013.

    Article  Google Scholar 

  7. Alamri, A., et al., A survey on sensor-cloud: Architecture, applications, and approaches. Int. J. Distrib. Sensor Networks 2013, 2013.

  8. Al-Mashaqbeh, G.A., Al-Karaki, J.N., Bataineh, S.M., Clear: A cross-layer enhanced and adaptive routing framework for wireless mesh networks. Wirel. Pers. Commun. 51(3):449–482, 2009.

    Article  Google Scholar 

  9. Alrajeh, N.A., Khan, S., Campbell, C.E., Shams, B., Multi-channel framework for body area network in health monitoring. Appl. Math. 7 (5):1743–1747, 2013.

    Google Scholar 

  10. Baig, M., and Gholamhosseini, H., Smart health monitoring systems: An overview of design and modeling. J. Med. Syst. 37(2), 2013.

  11. Braem, B., Latre, B., Moerman, I., Blondia, C., Demeester, P.: The wireless autonomous spanning tree protocol for multihop wireless body area networks. In: Third Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services, 2006, pp. 1–8. IEEE, 2006.

  12. Broch, J., Johnson, D.B., Maltz, D.A.: The dynamic source routing protocol for mobile ad hoc networks. Internet-Draft, draft-ietf-manet-dsr-00.txt, 1998.

  13. Camp, T., Boleng, J., Davies, V., A survey of mobility models for ad hoc network research. Wirel. Commun. Mob. Comput. 2(5):483–502, 2002.

    Article  Google Scholar 

  14. Chen, B., and Pompili, D., Transmission of patient vital signs using wireless body area networks. Mob. Netw. Appl. 16(6):663–682, 2011.

    Article  Google Scholar 

  15. Chen, M., Gonzalez, S., Vasilakos, A., Cao, H., Leung, V.C., Body area networks: A survey. Mob. Netw. Appl. 16(2):171–193, 2011.

    Article  Google Scholar 

  16. Chen, M., Mao, S., Liu, Y., Big data: A survey. Mob. Netw. Appl. 19(2):171–209, 2014.

    Article  Google Scholar 

  17. Chen, Y.Y., Lu, J.C., Jan, J.K., A secure ehr system based on hybrid clouds. J. Med. Syst. 36(5): 3375–3384, 2012.

    Article  Google Scholar 

  18. Dai, L., Gao, X., Guo, Y., Xiao, J., Zhang, Z., et al., Bioinformatics clouds for big data manipulation. Biol. Direct 7(1):43, 2012.

    Article  Google Scholar 

  19. Das, S.R., Belding-Royer, E.M., Perkins, C.E., Ad hoc on-demand distance vector (aodv) routing. IETF RFC,3561, 2003.

  20. De Couto, D.S., Aguayo, D., Bicket, J., Morris, R., A high-throughput path metric for multi-hop wireless routing. Wirel. Netw 11(4):419–434, 2005.

    Article  Google Scholar 

  21. Diallo, O., Rodrigues, J.J., Sene, M., Niu, J.: Real-time query processing optimization for cloud-based wireless body area networks. Information Sciences, 2014.

  22. Dinh, H.T., Lee, C., Niyato, D., Wang, P.: A survey of mobile cloud computing: architecture, applications, and approaches. Wireless Communications and Mobile Computing, 2011.

  23. Doherty, S.T., and Oh, P., A multi-sensor monitoring system of human physiology and daily activities. Telemed. e-Health 18(3):185–192, 2012.

    Article  Google Scholar 

  24. F. Costa, J, Rodrigues, J., Simes, T., Lloret, J, Exploring social networks and improving hypertext results for cloud solutions. Mob. Netw. Appl.,1–7, 2014.

  25. Folea, S., and Ghercioiu, M.: Ultra-low power wi-fi tag for wireless sensing. In: IEEE International Conference on Automation, Quality and Testing, Robotics, 2008. AQTR 2008. Vol. 3, pp. 247–252. IEEE, 2008.

  26. Fortino, G., Di Fatta, G., Pathan, M., Vasilakos, A.V., Cloud-assisted body area networks: state-of-the-art and future challenges. Wirel. Netw,1–14, 2014.

  27. González-Valenzuela, S., Chen, M., Leung, V.C., Mobility support for health monitoring at home using wearable sensors. IEEE Trans. Inf. Technol. Biomed. 15(4):539–549, 2011.

    Article  Google Scholar 

  28. Hamidian, A., A study of internet connectivity for mobile ad hoc networks in ns-2. Sweden: Lund Institute of Technology, 2003.

    Google Scholar 

  29. Hayajneh, T., Almashaqbeh, G., Ullah, S., Vasilakos, A., A survey of wireless technologies coexistence in wban: analysis and open research issues. Wirel. Netw,1–35, 2014.

  30. Jacob, N.A., Pillai, V., Nair, S., Harrell, D.T., Delhommer, R., Chen, B., Sanchez, I., Almstrum, V., Gopalan, S., Low-cost remote patient monitoring system based on reduced platform computer technology. Telemed. e-Health 17(7):536–545, 2011.

    Article  Google Scholar 

  31. Karthikeyan, N., and Sukanesh, R., Cloud based emergency health care information service in india. J. Med. Syst. 36(6):4031–4036, 2012.

    Article  Google Scholar 

  32. Lai, X., Liu, Q., Wei, X., Wang, W., Zhou, G., Han, G., A survey of body sensor networks. Sensors 13(5):5406–5447, 2013.

    Article  Google Scholar 

  33. Latré, B., Braem, B., Moerman, I., Blondia, C., Demeester, P., A survey on wireless body area networks. Wirel. Netw 17(1):1–18, 2011.

    Article  Google Scholar 

  34. Latre, B., Braem, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., Demeester, P.: A low-delay protocol for multihop wireless body area networks. In: Fourth Annual International Conference on Mobile and Ubiquitous Systems: Networking & Services, 2007. MobiQuitous 2007. pp. 1–8. IEEE, 2007.

  35. Lin, C.C., Lee, R.G., Hsiao, C.C., A pervasive health monitoring service system based on ubiquitous network technology. Int. J. Med. Inform. 77(7):461–469, 2008.

    Article  Google Scholar 

  36. Low, C., and Hsueh Chen, Y., Criteria for the evaluation of a cloud-based hospital information system outsourcing provider. J. Med. Syst. 36 (6):3543–3553, 2012.

    Article  Google Scholar 

  37. Peng Zhang Hanlin Sun, Z.Y.: A novel architecture based on cloud computing for wireless sensor network. In: International Conference on Computer Science and Electronics Engineering (ICCSEE), pp. 472–475, 2013.

  38. Postema, T., Peeters, J., Friele, R., Key factors influencing the implementation success of a home telecare application. Int. J. Med. Inform. 81(6):415–423, 2012.

    Article  Google Scholar 

  39. Poulymenopoulou, M., Malamateniou, F., Vassilacopoulos, G., Emergency healthcare process automation using mobile computing and cloud services. J. Med. Syst. 36(5):3233–3241, 2012.

    Article  Google Scholar 

  40. Rahimi, M., Ren, J., Liu, C., Vasilakos, A., Venkatasubramanian, N., Mobile cloud computing: A survey, state of art and future directions. Mob. Netw. Appl. 19(2):133–143, 2014.

    Article  Google Scholar 

  41. Rodrigues, J.J., de la Torre, I., Fernández, G., López-Coronado, M., Analysis of the security and privacy requirements of cloud-based electronic health records systems. J. Med. Internet Res. 15(8), 2013.

  42. Siddiqui, Z., Abdullah, A., Khan, M., Alghamdi, A., Smart environment as a service: Three factor cloud based user authentication for telecare medical information system. J. Med. Syst. 38(1), 2013.

  43. Touati, F., and Tabish, R., U-healthcare system: State-of-the-art review and challenges. J. Med. Syst. 37(3):1–20, 2013.

    Article  Google Scholar 

  44. Tozlu, S., Senel, M., Mao, W., Keshavarzian, A., Wi-fi enabled sensors for internet of things: A practical approach. IEEE Commun. Mag. 50(6):134–143, 2012.

    Article  Google Scholar 

  45. Tsai, C.W., and Rodrigues, J., Metaheuristic scheduling for cloud: A survey. IEEE Syst. J. 8(1):279–291, 2014.

    Article  Google Scholar 

  46. Ullah, S., Higgins, H., Braem, B., Latre, B., Blondia, C., Moerman, I., Saleem, S., Rahman, Z., Kwak, K.S., A comprehensive survey of wireless body area networks. J. Med. Syst. 36(3):1065–1094, 2012.

    Article  Google Scholar 

  47. Vastardis, N., and Yang, K., An enhanced community-based mobility model for distributed mobile social networks. J. Ambient Intell. Humanized Comput. 5(1):65–75, 2014.

    Article  Google Scholar 

  48. Vilaplana, J., Solsona, F., Abella, F., Filgueira, R., Torrento, J.R., The cloud paradigm applied to e-health. BMC Med. Inf. Decis. Mak. 13:35, 2013.

    Article  Google Scholar 

  49. Wan, J., Zou, C., Ullah, S., Lai, C.F., Zhou, M., Wang, X., Cloud-enabled wireless body area networks for pervasive healthcare. IEEE Netw. 27(5):56–61, 2013.

    Article  Google Scholar 

  50. Wang, Y., Wang, Q., Zeng, Z., Zheng, G., Zheng, R.: Wicop: Engineering wifi temporal white-spaces for safe operations of wireless body area networks in medical applications. In: Real-Time Systems Symposium (RTSS), 2011 IEEE 32nd. pp. 170–179. IEEE, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghada Almashaqbeh.

Additional information

This article is part of the Topical Collection on Systems-Level Quality Improvement

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almashaqbeh, G., Hayajneh, T., Vasilakos, A.V. et al. QoS-Aware Health Monitoring System Using Cloud-Based WBANs. J Med Syst 38, 121 (2014). https://doi.org/10.1007/s10916-014-0121-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-014-0121-2

Keywords

Navigation