Skip to main content
Log in

Processing Diabetes Mellitus Composite Events in MAGPIE

  • Mobile Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

The focus of this research is in the definition of programmable expert Personal Health Systems (PHS) to monitor patients affected by chronic diseases using agent oriented programming and mobile computing to represent the interactions happening amongst the components of the system. The paper also discusses issues of knowledge representation within the medical domain when dealing with temporal patterns concerning the physiological values of the patient. In the presented agent based PHS the doctors can personalize for each patient monitoring rules that can be defined in a graphical way. Furthermore, to achieve better scalability, the computations for monitoring the patients are distributed among their devices rather than being performed in a centralized server. The system is evaluated using data of 21 diabetic patients to detect temporal patterns according to a set of monitoring rules defined. The system’s scalability is evaluated by comparing it with a centralized approach. The evaluation concerning the detection of temporal patterns highlights the system’s ability to monitor chronic patients affected by diabetes. Regarding the scalability, the results show the fact that an approach exploiting the use of mobile computing is more scalable than a centralized approach. Therefore, more likely to satisfy the needs of next generation PHSs. PHSs are becoming an adopted technology to deal with the surge of patients affected by chronic illnesses. This paper discusses architectural choices to make an agent based PHS more scalable by using a distributed mobile computing approach. It also discusses how to model the medical knowledge in the PHS in such a way that it is modifiable at run time. The evaluation highlights the necessity of distributing the reasoning to the mobile part of the system and that modifiable rules are able to deal with the change in lifestyle of the patients affected by chronic illnesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. http://www.bodytel.com

  2. http://aws.amazon.com/

References

  1. Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A., A smartphone-based fall detection system. Pervasive Mob. Comput. 8(6):883–899, 2012.

    Article  Google Scholar 

  2. Arnrich, B., Mayora, O., Bardram, J., Tröster, G., Pervasive healthcare. Paving the way for a pervasive, user-centered and preventive healthcare model. Methods Inf. Med. 49(1):67–73, 2010.

    CAS  PubMed  Google Scholar 

  3. Bagu̇ės, M.I., Bermu̇dez, J., Burgos, A., Goṅi, A., Illarramendi, A.: Rodríguez, J., Tablado, A.: An innovative system that runs on a PDA for a continuous monitoring of people. In: Proceedings of 19th IEEE International Symposium on Computer-Based Medical Systems (CBMS), pp. 151–156 (2006)

  4. Bardram, J.E., Pervasive healthcare as a scientific discipline. Methods Inf. Med. 47(3):178–185, 2008.

    CAS  PubMed  Google Scholar 

  5. Baumgarten, M., and Mulvenna, M.: Cognitive sensor networks: Towards self-adapting ambient intelligence for pervasive healthcare. In: Proceedings of 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 366–369 (2011)

  6. Borowczyk, A., Gawinecki, M., Paprzycki, M.: BDI agents in a patient monitoring scenario. In: Proceedings of 2nd International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 82–85 (2008)

  7. Bromuri, S., and Stathis, K.: Distributed agent environments in the Ambient Event Calculus. In: Proceedings of 3rd ACM International Conference on Distributed Event-Based Systems (DEBS) (2009)

  8. Brugués, A., Bromuri, S., Pegueroles, J., Schumacher, M.: MAGPIE: An agent platform for the development of mobile applications for pervasive healthcare. In: Proceedings of 3rd International Workshop on Artificial Intelligence and Assistive Medicine (AI-AM/NetMed), pp. 6–10 (2014)

  9. Brugués, A., Bromuri, S., Pegueroles, J., Schumacher, M.: Providing interoperability to a pervasive healthcare system through the HL7 CDA standard. In: Proceedings of 15th International HL7 Interoperability Conference (IHIC), pp. 5–12 (2015)

  10. Buse, J.B., Ginsberg, H.N., Bakris, G.L., Clark, N.G., Costa, F., et al., Primary prevention of cardiovascular diseases in people with diabetes mellitus a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 30(1):162–172, 2007.

    Article  CAS  PubMed  Google Scholar 

  11. Cacciagrano, D., Corradini, F., Culmone, R., Merelli, E., Vito, L.: Healthcare tomorrow: Toward self-adaptive, ubiquitous and personalized services. In: Proceedings of 5th International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM), pp. 245–250 (2011)

  12. Capel, I., Rigla, M., García-Sáez, G., Rodríguez-Herrero, A., Pons, B., Subías, D., García-García, F., Gallach, M., Aguilar, M., Pérez-Gandía, C., et al., Artificial pancreas using a personalized rule-based controller achieves overnight normoglycemia in patients with type 1 diabetes. Diabetes Technol. Ther. 16(3):172–179, 2014.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Cobelli, C., Renard, E., Kovatchev, B., Artificial pancreas: past, present, future. Diabetes 60(11): 2672–2682, 2011.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Dolin, R.H., Alschuler, L., Boyer, S., Beebe, C., Behlen, F.M., Biron, P.V., Shabo, A., HL7 Clinical document drchitecture, release 2. J. Am. Med. Inf. Assoc. 13(1):30–39, 2006.

    Article  Google Scholar 

  15. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M., The many faces of publish/subscribe. ACM Comput. Surv. 35(2):114–131, 2003.

    Article  Google Scholar 

  16. Facchinetti, A., Sparacino, G., Cobelli, C., An online self-tunable method to denoise cgm sensor data. IEEE Trans. Biomed. Eng. 57(3):634–641, 2010.

    Article  PubMed  Google Scholar 

  17. Fico, G., Fioravanti, A., Arredondo, M., Ardigo, D., Guillen, A.: A healthy lifestyle coaching-persuasive application for patients with type 2 diabetes. In: Proceedings of 32nd International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2221–2224 (2010)

  18. Frantz, C., Nowostawski, M., Purvis, M.: Augmenting Android with AOSE principles for enhanced functionality reuse in mobile applications (2012)

  19. Gislason, B., Mcknight, C., Potvin, B., Stuart, S., Zepeda, J., Weber, J., Elmiligi, H.: Introducing glucofit: An assistive technology for monitoring and managing diabetes. In: Proceedings of 7th International Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA), pp. 414–419 (2012)

  20. Heinemann, L., and Krinelke, L., Insulin infusion set: the achilles heel of continuous subcutaneous insulin infusion. J. Diabetes Sci. Technol. 6(4):954–964, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Institute of Electrical and Electronics Engineers, IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. IEEE Std. 610:1–217, 1991.

    Google Scholar 

  22. Isern, D., Sánchez, D., Moreno, A., Agents applied in health care: A review. Int. J. Med. Inform. 79 (3):145–166, 2010.

    Article  PubMed  Google Scholar 

  23. Kafalı, Ö., Bromuri, S., Sindlar, M., van der Weide, T., Aguilar Pelaez, E., Schaechtle, U., Alves, B., Zufferey, D., Rodriguez-Villegas, E., Schumacher, M.I., Stathis, K., COMMODITY 12: A smart e-health environment for diabetes management. J. Ambient Intell. Smart Environ. 5(5):479–502, 2013.

    Google Scholar 

  24. Keenan, D.B., Mastrototaro, J.J., Voskanyan, G., Steil, G.M., Delays in minimally invasive continuous glucose monitoring devices: a review of current technology. J. Diabetes Sci. Technol. 3(5):1207–1214, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  25. Kowalski, R., and Sergot, M., A logic-based calculus of events. New Gener. Comput. 4(1):67–95, 1986.

    Article  Google Scholar 

  26. Mukherjee, A., Pal, A., Misra, P.: Data analytics in ubiquitous sensor-based health information systems. In: Proceedings of 6th International Conference on Next Generation Mobile Applications, Services and Technologies (NGMAST), pp. 193–198 (2012)

  27. Nefti, S., Manzoor, U., Manzoor, S.: Cognitive agent based intelligent warning system to monitor patients suffering from dementia using ambient assisted living. In: Proceedings of 2010 International Conference on Information Society (i-Society), pp. 92–97 (2010)

  28. O’Grady, M.J., Retterath, A.J., Keenan, D.B., Kurtz, N., Cantwell, M., et al., The use of an automated, portable glucose control system for overnight glucose control in adolescents and young adults with type 1 diabetes. Diabetes Care 35(11):2182–2187, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Palazzo, L., Rossi, M., Dragoni, A.F., Claudi, A., Dolcini, G., Sernani, P.: A multi-agent architecture for health information systems. In: Proceedings of 7th KES Conference on Agent and Multi-Agent Systems: Technologies and Applications (KES-AMSTA), pp. 375–384 (2013)

  30. Peng, H., Hu, B., Liu, Q., Dong, Q., Zhao, Q., Moore, P.: User-centered depression prevention: An eeg approach to pervasive healthcare. In: Proceedings of 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 325–330 (2011)

  31. Pérez-Gandía, C., Facchinetti, A., Sparacino, G., Cobelli, C., Gómez, E.J., Rigla, M., De Leiva, A., Hernando, M.E., Artificial neural network algorithm for online glucose prediction from continuous glucose monitoring. Diabetes Technol. Ther. 12(1):81–88, 2010.

    Article  PubMed  Google Scholar 

  32. Santi, A., Guidi, M., Ricci, A.: JaCa-Android: An agent-based platform for building smart mobile applications. In: Proceedings of of The Multi-Agent Logics, Languages, and Organisations Federated Workshops (MALLOW 2010), pp. 48–54 (2010)

  33. Shankararaman, V., Ambrosiadou, V., Loomes, M., Panchal, T.: Patient care management using a multi-agent approach. In: Proceedings of 2000 International Conference on Systems, Man, and Cybernetics (SMC), Vol. 3, pp. 1817–1821 (2000)

  34. Shaw, J., Sicree, R., Zimmet, P., Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87(1):4–14, 2010.

    Article  CAS  PubMed  Google Scholar 

  35. Stathis, K., Kakas, A., Lu, W., Demetriou, N., Endriss, U.: Bracciali, A.:PROSOCS: a platform for programming software agents in computational logic. In: Proceedings of 4th International Symposium From Agent Theory to Agent Implementation (AT2AI-4), pp. 523–528 (2004)

  36. Su, C.J., and Wu, C.Y., JADE implemented mobile multi-agent based, distributed information platform for pervasive health care monitoring. Appl. Soft. Comput. 11(1):315–325, 2011.

    Article  Google Scholar 

  37. Tauschmann, M., and Hovorka, R., Insulin pump therapy in youth with type 1 diabetes: toward closed-loop systems. Expert Opin. Drug Deliv. 11(6):943–955, 2014.

    Article  CAS  PubMed  Google Scholar 

  38. Touati, F., and Tabish, R., U-healthcare system: State-of-the-art review and challenges. J. Med. Syst. 37 (3):9949, 2013.

    Article  PubMed  Google Scholar 

  39. Ughetti, M., Trucco, T., Gotta, D.: Development of agent-based, peer-to-peer mobile applications on ANDROID with JADE. In: Proceedings of 2nd. International Conference on Mobile Ubiquitous Computing, Systems, Services and Technologies (UBICOMM), pp. 287–294 (2008)

  40. Urovi, V., Olivieri, A.C., Bruguės, A., Bromuri, S., Fornara, N., Schumacher, M.I., Secure P2P cross-community health record exchange in IHE compatible systems. Int. J. Artif. Intell. Tools 23(1):1440,006, 2014.

    Article  Google Scholar 

  41. Varshney, U., Pervasive healthcare and wireless health monitoring. Mobile Netw. Appl. 12(2-3):113–127, 2007.

    Article  Google Scholar 

  42. Wallymahmed, M.: Encouraging people with diabetes to get the most from blood glucose monitoring: Observing and acting upon blood glucose patterns. Journal of Diabetes Nursing, Vol. 17 (2013)

  43. Wang, L., Pedersen, P., Strong, D., Tulu, B., Agu, E., Ignotz, R., Smartphone based wound assessment system for patients with diabetes. IEEE Trans. Biomed. Eng. 62(2):477–488, 2015.

    Article  PubMed  Google Scholar 

  44. Weyns, D., Omicini, A., Odell, J., Environment as a first class abstraction in multiagent systems. Auton. Agents Multi-Agent Syst. 14(1):5–30, 2007.

    Article  Google Scholar 

  45. Wooldridge, M., An introduction to multiagent systems: Wiley, 2009.

  46. Zarkogianni, K., Mitsis, K., Arredondo, M.T., Fico, G., Fioravanti, A., Nikita, K.: Neuro-fuzzy based glucose prediction model for patients with type 1 diabetes mellitus. In: Proceedings of 2nd IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 252–255 (2014)

  47. Zhang, P., Zhang, X., Brown, J., Vistisen, D., Sicree, R., Shaw, J., Nichols, G., Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87(3):293–301, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Hasler Foundation, HES-SO RCSO ISNet and the FP7 287841 COMMODITY12 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Brugués.

Additional information

This article is part of the Topical Collection on Mobile Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brugués, A., Bromuri, S., Barry, M. et al. Processing Diabetes Mellitus Composite Events in MAGPIE. J Med Syst 40, 44 (2016). https://doi.org/10.1007/s10916-015-0377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0377-1

Keywords

Navigation