Skip to main content
Log in

FPGA Implementation of Heart Rate Monitoring System

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

This paper describes a field programmable gate array (FPGA) implementation of a system that calculates the heart rate from Electrocardiogram (ECG) signal. After heart rate calculation, tachycardia, bradycardia or normal heart rate can easily be detected. ECG is a diagnosis tool routinely used to access the electrical activities and muscular function of the heart. Heart rate is calculated by detecting the R peaks from the ECG signal. To provide a portable and the continuous heart rate monitoring system for patients using ECG, needs a dedicated hardware. FPGA provides easy testability, allows faster implementation and verification option for implementing a new design. We have proposed a five-stage based methodology by using basic VHDL blocks like addition, multiplication and data conversion (real to the fixed point and vice-versa). Our proposed heart rate calculation (R-peak detection) method has been validated, using 48 first channel ECG records of the MIT-BIH arrhythmia database. It shows an accuracy of 99.84 %, the sensitivity of 99.94 % and the positive predictive value of 99.89 %. Our proposed method outperforms other well-known methods in case of pathological ECG signals and successfully implemented in FPGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Crevasse, L., and Ariet, M., Clinical usefulness of computerized ECG systems. J. Med. Syst. 11:21–24, 1987.

    Article  CAS  PubMed  Google Scholar 

  2. Elmansouri, K., Latif, R., Nassiri, B., and Maoulainine, F.M.R., Developing a real time electrocardiogram system using virtual bio-instrumentation. J. Med. Syst. 38:39, 2014. doi:10.1007/s10916-014-0039-8.

    Article  PubMed  Google Scholar 

  3. Pollonini, L., Rajan, N.O., Xu, S., Madala, S., and Dacso, C.C., A novel handheld device for use in remote patient monitoring of heart failure patients-design and preliminary validation on healthy subjects. J. Med. Syst. 36:653–659, 2012. doi:10.1007/s10916-010-9531-y.

    Article  PubMed  Google Scholar 

  4. McSharry, P.E., Clifford, G.D., Tarassenko, L., and Smith, L.A., A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50(3):289–294, 2003. doi:10.1109/TBME.2003.808805.

    Article  PubMed  Google Scholar 

  5. Guler, N., and Fidan, U., Wireless transmission of ECG signal. J. Med. Syst. 30(3):231–235, 2006. doi:10.1007/s10916-005-7980-5.

    Article  PubMed  Google Scholar 

  6. Saini, I., Singh, D., and Khosla, A., QRS detection using K-nearest neighbor algorithm (KNN) and evaluation on standard ECG databases. J. Adv. Res. 4:331–344, 2013. doi:10.1016/j.jare.2012.05.007.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sörnmo, L., Laguna, P., Emg, T., Caton, R., Berger, H., Jacob, S.T., et al., Bioelectrical signal processing in cardiac and neurological applications. Gene Expr. 16:49, 2014. doi:10.1002/9780470511923.

    Article  Google Scholar 

  8. Yeh, Y.C., and Wang, W.J., QRS complexes detection for ECG signal: The difference operation method. Comput. Methods Prog. Biomed. 91:245–254, 2008. doi:10.1016/j.cmpb.2008.04.006.

    Article  Google Scholar 

  9. Kew, H.-P., and Jeong, D.-U., Variable threshold method for ECG R-peak detection. J. Med. Syst. 35:1085–1094, 2011. doi:10.1007/s10916-011-9745-7.

    Article  PubMed  Google Scholar 

  10. Cho, G.-Y., Lee, S.-J., and Lee, T.-R., An optimized compression algorithm for real-time ECG data transmission in wireless network of medical information systems. J. Med. Syst. 39(1):161, 2015. doi:10.1007/s10916-014-0161-7.

    Article  PubMed  Google Scholar 

  11. Pan, J., and Tompkins, W.J., A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32:230–236, 1985. doi:10.1109/TBME.1985.325532.

    Article  CAS  PubMed  Google Scholar 

  12. Silipo, R., and Marches, C., Artificial neural networks for automatic ECG analysis. IEEE Trans. Signal Process. 46:1417–1425, 1998. doi:10.1109/78.668803.

    Article  Google Scholar 

  13. Hamilton, P. S., and Tompkins, W. J., Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 33(12), 1157–65, 1986. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/3817849.

  14. Christov, I.I., Real time electrocardiogram QRS detection using combined adaptive threshold. Biomed. Eng. Online. 3:28, 2004. doi:10.1186/1475-925X-3-28.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Zhang, H., An Improved QRS Wave Group Detection Algorithm and Matlab Implementation. In Physics Procedia (Vol. 25, pp. 1010–1016). Elsevier Srl, 2012. doi:10.1016/j.phpro.2012.03.192.

  16. Legarreta, I.R., Addison, P.S., Grubb, N., Clegg, G.R., Robertson, C.E., Fox, K.A.A., and Watson, J.N., R-wave detection using continuous wavelet modulus maxima. Comput. Cardiol. 2003, 2003. doi:10.1109/CIC.2003.1291218.

  17. Martinez, J.P., Almeida, R., Olmos, S., Rocha, A.P., and Laguna, P., A wavelet-based ECG delineator evaluation on standard databases. IEEE Trans. Biomed. Eng. 51:570–581, 2004. doi:10.1109/TBME.2003.821031.

    Article  PubMed  Google Scholar 

  18. Ghaffarl, A., Golbayani, H., and Ghasemi, M., A new mathematical based QRS detector using continuous wavelet transform. Comput. Electr. Eng. 34:81–91, 2008. doi:10.1016/j.compeleceng.2007.10.005.

    Article  Google Scholar 

  19. Daamouche, A., Hamami, L., Alajlan, N., and Melgani, F., A wavelet optimization approach for ECG signal classification. Biomed. Signal Process. Control. 7:342–349, 2012. doi:10.1016/j.bspc.2011.07.001.

    Article  Google Scholar 

  20. Li, C., Zheng, C., and Tai, C., Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng. 42:21–28, 1995. doi:10.1109/10.362922.

    Article  CAS  PubMed  Google Scholar 

  21. Benitez, D., Gaydecki, P. A, Zaidi, A, and Fitzpatrick, A P., The use of the Hilbert transform in ECG signal analysis. Comput. Biol. Med. 31(5), 399–406, 2001. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11535204.

  22. Pal, S., and Mitra, M., Empirical mode decomposition based ECG enhancement and QRS detection. Comput. Biol. Med. 42:83–92, 2012. doi:10.1016/j.compbiomed.2011.10.012.

    Article  PubMed  Google Scholar 

  23. Manikandan, M.S., and Soman, K.P., A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed. Signal Process. Control. 7(2):118–128, 2012. doi:10.1016/j.bspc.2011.03.004.

    Article  Google Scholar 

  24. Zhu, H., and Dong, J., An R-peak detection method based on peaks of shannon energy envelope. Biomed. Signal Process. Control, 2013. doi:10.1016/j.bspc.2013.01.001.

    Google Scholar 

  25. Shukla, A., & Macchiarulo, L., A Fast and Accurate FPGA based QRS detection System. In 30th Annual International IEEE EMBS Conference Vancouver, British Columbia, Canada, August 20–24, 2008. (pp. 4828–4831).

  26. Li, Y., Yu, H., Jiang, L., Ma, L., & Ji, Z., Adaptive lifting scheme for ECG QRS complexes detection and its FPGA implementation. In Proceedings - 2010 3rd International Conference on Biomedical Engineering and Informatics, BMEI, (Vol. 2, pp. 721–724), 2010. doi:10.1109/BMEI.2010.5640073

  27. Stojanović, R., Karadaglić, D., Mirković, M., and Milošević, D., A FPGA system for QRS complex detection based on integer wavelet transform. Meas. Sci. Rev., 2011. doi:10.2478/v10048-011-0024-z.

    Google Scholar 

  28. Chowdhury, S.R., Field programmable gate array based fuzzy neural signal processing system for differential diagnosis of QRS complex tachycardia and tachyarrhythmia in noisy ECG signals. J. Med. Syst. 36:765–775, 2012. doi:10.1007/s10916-010-9543-7.

    Article  PubMed  Google Scholar 

  29. Moody, G. B., & Mark, R. G., The impact of the MIT-BIH arrhythmia database. IEEE engineering in medicine and biology magazine: the quarterly magazine of the Engineering in Medicine & Biology Society, 20(3), 45–50, 2001. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11446209

  30. Goldberger, A.L., Amaral, L.A., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., et al., PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 101(23):E215–E220, 2000. doi:10.1161/01.CIR.101.23.e215.

    Article  CAS  PubMed  Google Scholar 

  31. Yates, R., Fixed-point arithmetic: An introduction. Digital Signal Labs (pp. 1–14), 2009. http://www.digitalsignallabs.com/fp.pdf

  32. Grys, S., Signed multiplication technique by means of unsigned multiply instruction. Comput. Electr. Eng. 37:1212–1221, 2011. doi:10.1016/j.compeleceng.2011.04.004.

    Article  Google Scholar 

  33. Shi, C., Floating-point to fixed-point conversion. Springer, 2004.

  34. Ngounou, G.M., and Kom, M., Optimization of noise in non-integrated instrumentation amplifier for the amplification of very low electrophisiological signals. Case of electro cardio graphic signals (ECG). J. Med. Syst. 38:152, 2014. doi:10.1007/s10916-014-0152-8.

    Article  PubMed  Google Scholar 

  35. Thakor, N.V., Webster, J.G., and Tompkins, W.J., Estimation of QRS complex power spectra for design of a QRS filter. IEEE Trans. Biomed. Eng. 31:702–706, 1984. doi:10.1109/TBME.1984.325393.

    Article  CAS  PubMed  Google Scholar 

  36. Ravanshad, N., Rezaee-Dehsorkh, H., Lotfi, R., and Lian, Y., A level-crossing based QRS-detection algorithm for wearable ECG sensors. IEEE J. Biomed. Health Inform. 18:183–192, 2014. doi:10.1109/JBHI.2013.2274809.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Panigrahy.

Additional information

This article is part of the Topical Collection on Patient Facing Systems.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panigrahy, D., Rakshit, M. & Sahu, P.K. FPGA Implementation of Heart Rate Monitoring System. J Med Syst 40, 49 (2016). https://doi.org/10.1007/s10916-015-0410-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-015-0410-4

Keywords

Navigation