Skip to main content
Log in

Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis

  • Patient Facing Systems
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Classification of different mechanisms of angle closure glaucoma (ACG) is important for medical diagnosis. Error-correcting output code (ECOC) is an effective approach for multiclass classification. In this study, we propose a new ensemble learning method based on ECOC with application to classification of four ACG mechanisms. The dichotomizers in ECOC are first optimized individually to increase their accuracy and diversity (or interdependence) which is beneficial to the ECOC framework. Specifically, the best feature set is determined for each possible dichotomizer and a wrapper approach is applied to evaluate the classification accuracy of each dichotomizer on the training dataset using cross-validation. The separability of the ECOC codes is maximized by selecting a set of competitive dichotomizers according to a new criterion, in which a regularization term is introduced in consideration of the binary classification performance of each selected dichotomizer. The proposed method is experimentally applied for classifying four ACG mechanisms. The eye images of 152 glaucoma patients are collected by using anterior segment optical coherence tomography (AS-OCT) and then segmented, from which 84 features are extracted. The weighted average classification accuracy of the proposed method is 87.65 % based on the results of leave-one-out cross-validation (LOOCV), which is much better than that of the other existing ECOC methods. The proposed method achieves accurate classification of four ACG mechanisms which is promising to be applied in diagnosis of glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shabana, N., Aquino, M. C., See, J., Tan, A. M., Nolan, W. P., Hitchings, R., Young, S. M., Loon, S. C., Sng, C. C., Wong, W., and Chew, P. T., Quantitative evaluation of anterior chamber parameters using anterior segment optical coherence tomography in primary angle closure mechanisms. Clin. Exp. Ophthalmol. 40:792–801, 2012.

    Article  Google Scholar 

  2. Ritch, R., Tham, C., and Lam, D., Long-term success of argon laser peripheral iridoplasty in the management of plateau iris syndrome. Ophthalmology 111:104–108, 2004.

    Article  PubMed  Google Scholar 

  3. Tian, J., Marziliano, P., Baskaran, M., Wong, H.-T., and Aung, T., Automatic anterior chamber angle assessment for HD-OCT images. IEEE Trans. Biomed. Eng. 58:3242–3249, 2011.

    Article  PubMed  Google Scholar 

  4. Nongpiur, M. E., He, M., Amerasinghe, N., Friedman, D. S., Tay, W. T., Baskaran, M., Smith, S. D., Wong, T. Y., and Aung, T., Lens vault, thickness, and position in Chinese subjects with angle closure. Ophthalmology 18:474–479, 2011.

    Article  Google Scholar 

  5. Wirawan, A., Kwoh, C. K., Chew, P. T. K., Aquino, M. C. D., Seng, C. L., See, J., Zheng, C., and Lin, W., Feature selection for computer-aided angle closure glaucoma mechanism detection. J. Med. Imag. Health Inform. 2(4):438–444, 2012.

    Article  Google Scholar 

  6. Nayak, J., Acharya, U. R., Bhat, P. S., Shetty, A., and Lim, T. C., Automated diagnosis of glaucoma using digital fundus images. J. Med. Syst. 33(5):337–346, 2009.

    Article  PubMed  Google Scholar 

  7. Balasubramanian, M., Zabic, S., Bowd, C., Thompson, H. W., Wolenski, P., Iyengar, S. S., Karki, B. B., and Zangwill, L. M., A framework for detecting glaucomatous progression in the optic nerve head of an eye using proper orthogonal decomposition. IEEE Trans. Inf. Technol. Biomed. 13(5):781–793, 2009.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Huang, M. L., Chen, H. Y., and Huan, J. J., Glaucoma detection using adaptive neuro-fuzzy inference system. Expert Syst. Appl. 32(2):458–468, 2007.

    Article  Google Scholar 

  9. Galar, M., Fernandez, A., Barrenechea, E., Bustince, H., and Herrera, F., An overview of ensemble methods for binary classifiers in multi-class problems: Experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44:1761–1776, 2011.

    Article  Google Scholar 

  10. Garcıa-Pedrajas, N., and Ortiz-Boyer, D., Improving multiclass pattern recognition by the combination of two Strategies. IEEE Trans. Pattern Anal. Mach. Intell. 28:1001–1006, 2006.

    Article  PubMed  Google Scholar 

  11. Dietterich, T. G., and Bakiri, G., Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Res. 2:263–286, 1995.

    Google Scholar 

  12. Allwein, E. L., Schapire, R. E., and Singer, Y., Reducing multiclass to binary: A unifying approach for margin classifiers. J. Mach. Learn. Res. 1:113–141, 2001.

    Google Scholar 

  13. Escalera, S., Pujol, O., and Radeva, P., On the decoding process in ternary error-correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 32:120–134, 2010.

    Article  PubMed  Google Scholar 

  14. Wang, L., Zhou, N., and Chu, F., A general wrapper approach to selection of class-dependent features. IEEE Trans. Neural Netw. 19:1267–1278, 2008.

  15. Maghsoudi, Y., Zoej, M. J. V., and Collins, M., Using class-based feature selection for the classification of hyperspectral data. Int. J. Remote Sens. 32:4311–4326, 2011.

    Article  Google Scholar 

  16. Bagheri, M. A., Gao, Q., and Escalera, S., A genetic-based subspace analysis method for improving Error-Correcting Output Coding. Pattern Recogn. 46:2830–2839, 2013.

    Article  Google Scholar 

  17. Pujol, O., Radeva, P., and Vitria, J., Discriminant ECOC: A heuristic method for application dependent design of error correcting output codes. IEEE Trans. Pattern Anal. Mach. Intell. 28:1007–1012, 2006.

    Article  PubMed  Google Scholar 

  18. Escalera, S., Pujol, O., and Radeva, P., Error-correcting ouput codes library. J. Mach. Learn. Res. 11:661–664, 2010.

    Google Scholar 

  19. Zhou, J., Peng, H., and Suen, C. Y., Data-driven decomposition for multi-class classification. Pattern Recogn. 41:67–76, 2008.

    Article  Google Scholar 

  20. Rocha, A., and Goldenstein, S. K., Multiclass from binary: Expanding one-versus-all, one-versus-one and ECOC-based approaches. IEEE Trans. Neural Netw. Learn. Syst. 25:289–302, 2014.

    Article  PubMed  Google Scholar 

  21. Escalera, S., Pujol, O., and Radeva, P., Separability of ternary codes for sparse designs of error correcting output codes. Pattern Recogn. Lett. 30:285–297, 2009.

    Article  Google Scholar 

  22. Saeys, Y., Inza, I., and Larranaga, P., A review of feature selection techniques in bioinformatics. Bioinfomatics 23:2507–2517, 2007.

    Article  CAS  Google Scholar 

  23. Peng, H., Long, F., and Ding, C., Feature selection based on mutual information criteria of maxdependency, max-relevance, and min- redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27:1226–1238, 2005.

    Article  PubMed  Google Scholar 

  24. Issac Niwas, S., Lin, W., Bai, X., Kwoh, C. K., Sng, C. C., Aquino, M. C., and Chew, P. T. K., Reliable feature selection for automated angle closure glaucoma mechanism detection. J. Med. Syst. 39:21, 2015.

    Article  PubMed  Google Scholar 

  25. Issac Niwas, S., Lin, W., Kwoh, C. K., Kuo, C. C., Aquino, M. C., Sng, C. C., and Chew, P. T. K., Crossexamination for angle-closure glaucoma feature detection. IEEE J. Biomed. Health Informatics 20:343–354, 2016.

    Article  Google Scholar 

  26. Waikato Environment for Knowledge Analysis: University of Waikato New Zealand. Available from: http://www.cs.waikato.ac.nz/ml/weka/index.html

Download references

Acknowledgments

This work was supported by Ministry of Education (MoE) AcRF Tire 1 Funding, Singapore, under Grant M4010981.020 RG36/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swamidoss Issac Niwas.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

This article is part of the Topical Collection on Patient Facing Systems

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, X., Niwas, S.I., Lin, W. et al. Learning ECOC Code Matrix for Multiclass Classification with Application to Glaucoma Diagnosis. J Med Syst 40, 78 (2016). https://doi.org/10.1007/s10916-016-0436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-016-0436-2

Keywords

Navigation