Skip to main content
Log in

Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things

  • Mobile & Wireless Health
  • Published:
Journal of Medical Systems Aims and scope Submit manuscript

Abstract

Indoor air quality (IAQ) parameters are not only directly related to occupational health but also have a significant impact on quality of life as people typically spend more than 90% of their time in indoor environments. Although IAQ is not usually monitored, it must be perceived as a relevant issue to follow up for the inhabitants’ well-being and comfort for enhanced living environments and occupational health. Carbon dioxide (CO2) has a substantial influence on public health and can be used as an essential index of IAQ. CO2 levels over 1000 ppm, indicates an indoor air potential problem. Monitoring CO2 concentration in real-time is essential to detect IAQ issues to quickly intervene in the building. The continuous technological advances in several areas such as Ambient Assisted Living and the Internet of Things (IoT) make it possible to build smart objects with significant capabilities for sensing and connecting. This paper presents the iAirCO2 system, a solution for CO2 real-time monitoring based on IoT architecture. The iAirCO2 is composed of a hardware prototype for ambient data collection and a Web and smartphone software for data consulting. In future, it is planned that these data can be accessed by doctors in order to support medical diagnostics. Compared to other solutions, the iAirCO2 is based on open-source technologies, providing a total Wi-Fi system, with several advantages such as its modularity, scalability, low-cost, and easy installation. The results reveal that the system can generate a viable IAQ appraisal, allowing to anticipate technical interventions that contribute to a healthier living environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Universal Open Platform and Reference Specification for Ambient Assisted Living: http://www.universaal.org/.

  2. Koleva, P., Tonchev, K., Balabanov, G., Manolova, A., Poulkov, V., Challenges in designing and implementation of an effective ambient assisted living system. Telecommunication in modern satellite, cable and broadcasting services (TELSIKS), 2015 12th international conference on. 305–308, 2015.

  3. Seguel, J. M., Merrill, R., Seguel, D., and Campagna, A. C., Indoor air quality. Am. J. Lifestyle Med. 11(4):284–2895, 2016.

    Article  Google Scholar 

  4. Bruce, N., Perez-Padilla, R., and Albalak, R., Indoor air pollution in developing countries: A major environmental and public health challenge. Bull. World Health Org. 78(9):1078–1092, 2000.

    CAS  PubMed  Google Scholar 

  5. Jones, A. P., Indoor air quality and health. Atmosph. Environ. 33(28):4535–4564, 1999.

    Article  CAS  Google Scholar 

  6. Satish, U. et al., Is CO2 an indoor pollutant? Direct effects of low-to-moderate CO2 concentrations on human decision-making performance. Environmental Health Perspectives, 2012.

  7. Yu, T.-C. et al., Wireless sensor networks for indoor air quality monitoring. Med. Eng. Phys. 35(2):231–235, 2013.

    Article  Google Scholar 

  8. Myers, S. S. et al., Increasing CO2 threatens human nutrition. Nature 510(7503):139–142, 2014.

    Article  CAS  Google Scholar 

  9. Caragliu, A., Del Bo, C., and Nijkamp, P., Smart cities in Europe. J. Urb. Technol. 18(2):65–82, 2011.

    Article  Google Scholar 

  10. Schaffers, H., Komninos, N., Pallot, M., Trousse, B., Nilsson, M., and Oliveira, A., Smart cities and the future internet: Towards cooperation frameworks for open innovation. In: Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S., Avessta, S., Nilsson, M. (Eds), The future internet. Vol. 6656. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, 431–446.

    Chapter  Google Scholar 

  11. Chourabi, H. et al., Understanding smart cities: An integrative. Framework:2289–2297, 2012.

  12. Zanella, A., Bui, N., Castellani, A., Vangelista, L., and Zorzi, M., Internet of things for smart cities. IEEE Internet Things J. 1(1):22–32, 2014.

    Article  Google Scholar 

  13. Batty, M. et al., Smart cities of the future. Eur. Phys. J. Spec. Topics 214(1):481–518, 2012.

    Article  Google Scholar 

  14. Hernández-Muñoz, J. M. et al., Smart cities at the forefront of the future internet. In: Domingue, J., Galis, A., Gavras, A., Zahariadis, T., Lambert, D., Cleary, F., Daras, P., Krco, S., Müller, H., Li, M.-S., Schaffers, H., Lotz, V., Alvarez, F., Stiller, B., Karnouskos, S., Avessta, S., Nilsson, M. (Eds), The future internet. Vol. 6656. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, 447–462.

    Chapter  Google Scholar 

  15. Tran, T. V., Dang, N. T., and Chung, W.-Y., Battery-free smart-sensor system for real-time indoor air quality monitoring. Sensors and Actuators B: Chemical, 2017.

  16. Kim, J.-Y., Chu, C.-H., and Shin, S.-M., ISSAQ: An integrated sensing systems for real-time indoor air quality monitoring. IEEE Sens. J. 14(12):4230–4244, 2014.

    Article  CAS  Google Scholar 

  17. Marques, G. and Pitarma, R., Health informatics for indoor air quality monitoring. Information Systems and technologies (CISTI), 2016 11th Iberian conference on. 1–6, 2016.

  18. Pitarma, R., Marques, G., and Ferreira, B. R., Monitoring indoor air quality for enhanced occupational health. J. Med. Syst. 41, no. 2, 2017.

  19. Marques, G., and Pitarma, R., Monitoring health factors in indoor living environments using internet of things. In: Rocha, Á., Correia, A. M., Adeli, H., Reis, L. P., Costanzo, S. (Eds), Recent advances in information Systems and technologies. Vol. 570. Cham: Springer International Publishing, 2017, 785–794.

    Chapter  Google Scholar 

  20. Abraham, S., and Li, X., A cost-effective wireless sensor network system for indoor air quality monitoring applications. Proc. Comput. Sci. 34:165–171, 2014.

    Article  Google Scholar 

  21. Marques, G., and Pitarma, R., An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Publ. Health 13(11):1152, 2016.

    Article  Google Scholar 

  22. Marques, G., Roque Ferreira, C., and Pitarma, R., A system based on the internet of things for real-time particle monitoring in buildings. Int. J. Environ. Res. Publ. Health 15(4):821, 2018.

    Article  Google Scholar 

  23. Srivatsa, P. and Pandhare, A., Indoor air quality: IoT solution. National Conference “NCPCI, 2016. 19, 2016.

  24. Salamone, F., Belussi, L., Danza, L., Galanos, T., Ghellere, M., and Meroni, I., Design and development of a nearable wireless system to control indoor air quality and indoor lighting quality. Sensors 17(5):1021, 2017.

    Article  Google Scholar 

  25. Bhattacharya, S., Sridevi, S., and Pitchiah, R., Indoor air quality monitoring using wireless sensor network. 422–427, 2012.

  26. Salamone, F., Belussi, L., Danza, L., Ghellere, M., and Meroni, I., Design and development of nEMoS, an all-in-one, low-cost, web-connected and 3D-printed device for environmental analysis. Sensors 15(6):13012–13027, 2015.

    Article  Google Scholar 

  27. Wang, S. K., Chew, S. P., Jusoh, M. T., Khairunissa, A., Leong, K. Y., and Azid, A. A., WSN based indoor air quality monitoring in classrooms. 020063, 2017.

  28. Lee, S. ., and Chang, M., Indoor and outdoor air quality investigation at schools in Hong Kong. Chemosphere 41(1–2):109–113, 2000.

    Article  CAS  Google Scholar 

  29. Seppanen, O. A., Fisk, W. J., and Mendell, M. J., Association of Ventilation Rates and CO2 concentrations with health andOther responses in commercial and institutional buildings. Indoor Air 9(4):226–252, 1999.

    Article  CAS  Google Scholar 

  30. Ramachandran, G. et al., Indoor air quality in two urban elementary schools—Measurements of airborne Fungi, carpet allergens, CO 2 , temperature, and relative humidity. J. Occup. Environ. Hyg. 2(11):553–566, 2005.

    Article  Google Scholar 

  31. Scheff, P. A., Paulius, V. K., Huang, S. W., and Conroy, L. M., Indoor air quality in a middle school, part I: Use of CO 2 as a tracer for effective ventilation. Appl. Occup. Environ. Hyg. 15(11):824–834, 2000.

    Article  CAS  Google Scholar 

  32. Wargocki, P., Wyon, D. P., Sundell, J., Clausen, G., and Fanger, P. O., The effects of outdoor air supply rate in an office on perceived air quality, sick building syndrome (SBS) symptoms and productivity. Indoor Air 10(4):222–236, 2000.

    Article  CAS  Google Scholar 

  33. Espressif Systems, “ESP8266EX Datasheet,” http://download.arduino.org/products/UNOWIFI/0A-ESP8266-Datasheet-EN-v4.3.pdf, 2015.

  34. Neuburg, M., iOS 7 programming fundamentals: Objective-c, xcode, and cocoa basics. O’Reilly Media, Inc., 2013.

  35. Lacis, A. A., Schmidt, G. A., Rind, D., and Ruedy, R. A., Atmospheric CO2: Principal control knob governing Earth’s temperature. Science 330(6002):356–359, 2010.

    Article  CAS  Google Scholar 

  36. Awbi, H. B., Ventilation of buildings. Taylor & Francis, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonçalo Marques.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mobile & Wireless Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marques, G., Ferreira, C.R. & Pitarma, R. Indoor Air Quality Assessment Using a CO2 Monitoring System Based on Internet of Things. J Med Syst 43, 67 (2019). https://doi.org/10.1007/s10916-019-1184-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10916-019-1184-x

Keywords

Navigation