Skip to main content
Log in

A Novel Non-destructive Testing Method by Measuring the Change Rate of Magnetic Flux Leakage

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

The application of magnetic sensors in the traditional magnetic flux leakage (MFL) technique has a significant influence on the detection results. The sensor is typically used to directly measure the amplitude of the magnetic leakage flux intensity as the detection signal. In view of noise effects on the detection result and the subsequent misinterpretation of defect signals, a new non-destructive testing method is proposed. The proposed method intends to measure the magnetic flux change rate using two sensors. A mathematical model is first established to present the principle of the change rate measurement. Based on the magnetic dipole theory, it is inferred that the new method is applicable and sensitive to the detection and location of defects. Moreover, this method is advantageous as it inhibits the interference of MFL noises such as the distension noise, background noise, and vibration noise. The model predictions are then verified by a series of simulations. Finally, an experimental platform is set up to practically detect the defect of a steel plate, and the results agree with the demonstrations and simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wagner, R., Goncalves, O., Demma, A.: Guided wave testing performance studies: comparison with ultrasonic and magnetic flux leakage pigs. Insight 4, 187–796 (2013). doi:10.1784/insi.2012.55.4.187

    Article  Google Scholar 

  2. Fernandes, B., Titus, M., Nims, D.K., et al.: Field test of magnetic methods for corrosion detection in prestressing strands in adjacent box-beam bridges. J. Bridge Eng. 6, 984–988 (2012). doi:10.1061/(ASCE)BE.1943-5592.0000379

    Article  Google Scholar 

  3. Strapacova, T., Janousek, L., Milan, S.: Evaluation of Advanced Sensor Types under Harmonic Excitation in ECT. Electromagn. Nondestruct. Eval. (XVI) (2014). doi:10.3233/978-1-61499-354-4-9

  4. Chady T., Psuj, G.: Comparative study of multidirectional transducers for evaluation of magnetic materials. Electromagn. Nondestruct. Eval. (XIII) (2010). doi:10.3233/978-1-60750-554-9-223

  5. Yahia, I.S., AlFaifyS, Y.F., et al.: Impedance spectroscopy of n-CdTe/p-CdMnTe/p- GaAs diluted magnetic diode. J. Electron. Mater 8, 2768–2772 (2015). doi:10.1007/s11664-015-3707-7

    Article  Google Scholar 

  6. Kim, J., Lee, J., Jun, J., et al.: Integration of hall and giant magnetoresistive sensor arrays for real-time 2-D visualization of magnetic field vectors. IEEE Trans. Magnet. 11, 3708–3711 (2012). doi:10.1109/TMAG.2012.2200662

    Article  Google Scholar 

  7. Goktepe, M.: Investigation of B-x and B-y components of the magnetic flux leakage in ferromagnetic laminated sample. Adv. Mater. Sci. Eng. (2013). doi:10.1155/2013/708396

  8. Wu, D.H., Zhang, Z.Y., Liu, Z.L., et al.: 3-D FEM simulation and analysis on the best range of lift-off values in MFL testing. J. Test. Eval. (2015). doi:10.1520/JTE20130133

  9. Jungmin, K., Jinyi, L., Jongwoo, J.: Integration of hall and giant magnetoresistive sensor arrays for real-time 2-D visualization of magnetic field vectors. IEEE Trans. Magnet. 11, 3447–3451 (2012). doi:10.1109/TMAG.2012.2200662

    Google Scholar 

  10. Gao, G., Qin, Y., Lian, M., et al.: Detecting typical defects in wire ropes through wavelet analysis. Insight 2, 98–105 (2015). doi:10.1784/insi.2014.57.2.98

    Article  Google Scholar 

  11. Kim, J., Angani, C.S., Le, J., Le, M., et al.: Magnetic leakage testing using linearly integrated hall and GMR sensor arrays to inspect inclusion in cold-rolled strips. IEEE Trans. Magnet. 50(11), 1–4 (2014). doi:10.1109/TMAG.2014.2326856

    Google Scholar 

  12. Kasai, N., Miura, K.: Detection of a Surface flaw using differential signals of MI sensors with residual magnetization method. High Press. Technol. Nondestruct. Eval. Division 241–244 (2012)

  13. Changrong, L.I.A.O., Zheng, L.I.A.O., Liang, H.A.N., et al.: Analytical study on crack magnetic flux leakage for ferromagnetic component and detection system based on geomagnetic field. J. Chongqing Univ. 10, 76–84 (2012). doi:10.11835/j.issn.1000-582X.2012.10.012

    Google Scholar 

  14. Dutta Sushant, M., Ghorbel Fathi, H., Stanley Roderic, K.: Dipole modeling of magnetic flux leakage. IEEE Trans. Magnet. 4, 1959–1965 (2009). doi:10.1109/TMAG.2008.2011895

    Article  Google Scholar 

  15. Kim, H.M., Park, G.S.: Defect estimation of a crack in underground pipelines by CMFL type NDT system. J. Electr. Eng. Technol. 6, 2218–2223 (2014). doi:10.5370/JEET.2014.9.6.2218

    Article  Google Scholar 

  16. Wang, P., Xiong, L., Sun, Y.: features extraction of sensor array based pmfl technology for detection of rail cracks. Measurement 47, 613–626 (2014). doi:10.1016/j.measurement.2013.09.047

    Article  Google Scholar 

  17. Yanhua, S., Yihua, K.: A new MFL principle and method based on near-zero background magnetic field. NDT & E Int. 4, 348–353 (2010). doi:10.1016/j.ndteint.2010.01.005

    Google Scholar 

  18. Gan, Z., Salman, E., Stanacevic, M.: Figures-of-merit to evaluate the significance of switching noise in analog circuits. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12, 2945–2956 (2015). doi:10.1109/TVLSI.2014.2386315

    Article  Google Scholar 

  19. Yan, S., Chao, Z., Rui, L.: Theory and application of magnetic flux leakage pipeline detection. Sensors 6, 31036–31055 (2015). doi:10.3390/s151229845

    Google Scholar 

  20. Liu, B., Cao, Y., Zhang, H.: Weakmagnetic flux leakage: a possible method for studying pipeline defects located either inside or outside the structures. NDT & E Int. 74, 81–86 (2015). doi:10.1016/j.ndteint.2015.05.008

    Article  Google Scholar 

  21. Edwards, C., Palmer, S.B.: The magnetic leakage field of surface breaking cracks. J. Phys. D 4, 657–673 (1986). doi:10.1088/0022-3727/19/4/018

  22. Mandache, C., Clapham, L.: A model for magnetic flux leakage signal predictions. J. Phys. D 20, 2427–2431 (2003). doi:10.1088/0022-3727/36/20/001

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Collaborative Innovation Center of High-End Equipment Manufacturing in Fujian, Science and Technology Major Project of Fujian Province (2015HZ0002-1) and National Natural Science Foundation (51677158), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang Xiaohong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehui, W., Lingxin, S., Xiaohong, W. et al. A Novel Non-destructive Testing Method by Measuring the Change Rate of Magnetic Flux Leakage. J Nondestruct Eval 36, 24 (2017). https://doi.org/10.1007/s10921-017-0396-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10921-017-0396-6

Keywords

Navigation