Skip to main content
Log in

Biodegradation of Electrospun Poly-(ɛ-caprolactone) Non-woven Fabrics by Pure-Cultured Soil Filamentous Fungi

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The biodegradation of electrospun nano-fibers of poly(ɛ-caprolactone) (PCL) was initially investigated with respect to the environmental application of PCL non-woven fabrics, using pure-cultured soil filamentous fungi, Aspergillus oryzae, Penicillium caseicolum, P. citrinum, Mucor sp., Rhizopus sp., Curvularia sp., and Cladosporium sp. Three kinds of non-woven PCL fabrics with different mean fiber diameters (330, 360, and 510 nm) were prepared by changing the viscosities of the pre-spun PCL solutions (150, 210, and 310 cPs, respectively). All of the pure-line soil filamentous fungi tested grew on the two fiber materials. Electron microscopy was used to observe the biodegradation processes revealing remarkable growth of two fungi, Rhizopus sp. and Mucor sp., along with the accompanying collapse of the nano-fiber matrices. In the biochemical oxygen demand (BOD) test, the biodegradation of the 330 nm PCL nano-fibers by Rhizopus sp. and Mucor sp. exceeded 20 and 30% carbon dioxide generation, respectively. The biodegradability of the PCL non-woven fabrics decreased with the mean fiber diameter and the 330 nm PCL nano-fiber that was made from 150 cPs solution (concentration, 7 wt%) exhibited the highest biodegradability. These results might offer some clues for the applications of the PCL non-woven fabrics having the controlled biodegradability in the environmental uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. Liu Y.L. Hsieh (2002) J. Polym. Sci. Part B: Polym. Phys. 40 2119

    Google Scholar 

  • H. Fong I. Chen D. H. Reneker (1999) Polymer 40 4585

    Google Scholar 

  • M. Bognitzki W. Czado T. Frese A. Schaper M. Hellwig M. Steinhart A. Greiner J. H. Wendorff (2001) Adv. Mater. 13 70

    Google Scholar 

  • J. M. Deizel J. Kleinmeyer D. Harris N.C. BeckTan (2001) Polymer 42 261

    Google Scholar 

  • Y.M. Shin M.M. Hohman M.P. Brenner G.C. Rutledge (2001) Polymer 42 9955

    Google Scholar 

  • K.H. Lee H.Y. Kim Y.M. La D.R. Lee N.H. Sung (2002) J. Polym. Sci. Part B: Polym. Phys. 40 2259

    Google Scholar 

  • K.H. Lee H.Y. Kim M.S. Khil Y.M. Ra D.R. Lee (2003) Polymer 44 1287

    Google Scholar 

  • Formhals A. (1934) US Patent 1, 975, 504

  • G. I. Taylor (1969) Proc. Roy. Soc. London Ser. A 313 453

    Google Scholar 

  • J. Doshi D. H. Reneker (1995) J. Electrostat 35 151

    Google Scholar 

  • P. Gibson H.-Gibson Schreuder D. Rivin (2001) Colloid. Surface. A 187–188 469

    Google Scholar 

  • X. Zong K. Kim D. Fang S. Ran B.S. Hsiao B. Chu (2002) Polymer 43 4403

    Google Scholar 

  • W. Li C.T. Laurencin E.J. Caterson R.S. Tuan F.K. Ko (2002) J. Biomed Mater. Res. 60 613

    Google Scholar 

  • C.J. Buchko K.M. Kozloff D.C. Martin (2001) Biomaterials 22 1289

    Google Scholar 

  • M.J. Diamond B. Freedman J.A. Garibaldi (1975) Int. Biodeterior. Bull. 11 127

    Google Scholar 

  • D. Goldberg (1995) J. Environ. Polym. Degrad. 3 61

    Google Scholar 

  • M. Mochizuki T. Hayashi K. Nakayama T. Masuda M. Hirami R. Qian B.Z. Jiang A. Nakajima (1999) Pure Appl. Chem. 71 2177

    Google Scholar 

  • E.D. Jackson A.G. Kempton (1975) Int. Biodeterior. Bull. 11 117

    Google Scholar 

  • H. Nishida Y. Tokiwa (1993) J. Environ. Polym. Degrad. 1 227

    Google Scholar 

  • A.C. Albertsson R. Renstad B. Erlandsson C. Eldsater S. Karlsson (1998) J. Appl. Polym. Sci. 70 61

    Google Scholar 

  • Z. Gan J.T. Fung X. Jing C. Wu W.K. Kuliche (1998) Polymer 40 1961

    Google Scholar 

  • S. C. Woodward P. S. Brewer F. Moatamed (1985) J. Biomed. Mater. Res. 19 437

    Google Scholar 

  • Y. Tokiwa T. Ando T. Suzuki (1976) Hakko Kogaku Zasshi (in Japanese) 54 603

    Google Scholar 

  • C.V. Benedict W.J. Cook P. Jarrett J.A. Cameron S.J. Huang J.P. Bell (1983) J. Appl. Polym. Sci. 28 327

    Google Scholar 

  • J.G. Sanchez A. Tsuchii Y. Tokiwa (2000) Biotechnol. Lett. 22 849

    Google Scholar 

  • H. Yoshimoto Y.M. Shin H. Terai J.P. Vacanti (2003) Biomaterials 24 2077

    Google Scholar 

  • K. Ohkawa M. Yamada A. Nishida N. Nishi H. Yamamoto (2000) J. Polym. Environ. 8 59

    Google Scholar 

  • Y. Doi K. Kasuya H. Abe N. Koyama S. Ishiwatari K. Takagi Y. Yoshida (1996) Polym. Degrad. Stab. 51 281

    Google Scholar 

  • K. Kasuya K. Takagi S. Ishiwatari Y. Yoshida Y. Doi (1998) Polym. Degrad. Stab. 59 327

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kousaku Ohkawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ohkawa, K., Kim, H. & Lee, K. Biodegradation of Electrospun Poly-(ɛ-caprolactone) Non-woven Fabrics by Pure-Cultured Soil Filamentous Fungi. J Environ Polym Degr 12, 211–218 (2004). https://doi.org/10.1007/s10924-004-8148-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-004-8148-y

Keywords

Navigation