Skip to main content
Log in

Abiotic Oxidation Studies of Oxo-biodegradable Polyethylene

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The best approach to induce oxo-biodegradation in polyethylene is the use of special additives known as pro-oxidants. Pro-oxidants accelerate abiotic oxidation and subsequent polymer chain cleavage rendering the product apparently more susceptible to biodegradation. In this work, the abiotic oxidation is studied to understand how the addition of nanoclay affects the oxidation rate and the degradation mechanism of oxo-biodegradable polyethylene. In order to achieve this, the following materials were used in this study: (1) polyethylene (PE), (2) oxo-biodegradable polyethylene (OPE), (3) polyethylene nanocomposite (PENac), and (4) oxo-biodegradable polyethylene nanocomposite (OPENac). Wide-Angle X-ray scattering (WAXS) and Transmission Electron Microscopy (TEM) studies reveal that grafting in the preparation of composites helps to achieve mixed intercalated/exfoliated morphology in PENac and OPENac. Abiotic oxidation was carried out in an oven for a period of 14 days at 70 °C with air supply. The effect of abiotic oxidation was evaluated by measuring the changes in tensile strength, elongation at break, carbonyl index and molecular weight. Results show that OPE and OPENac are more susceptible to oxidation than PENac. The molecular weight distribution data obtained from GPC reveal that the addition of nanoclay does not alter the oxidation mechanism in OPE significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Briassoulis D, Aristopoulou A, Bonora M, Verlodt I (2004) Biosyst Eng 88:131–143

    Article  Google Scholar 

  2. Albertsson AC, Andersson SO, Karlsson S (1987) Polym Degrad Stab 18:73–87

    Article  CAS  Google Scholar 

  3. Jakubowicz I (2002) Polym Degrad Stab 80:39–43

    Article  CAS  Google Scholar 

  4. Albertsson AC, Barenstedt C, Karlsson S (1993) Acta Polym 45:97–103

    Article  Google Scholar 

  5. Khabbaz F, Albertsson AC, Karlsson S (1999) Polym Degrad Stab 63:127–138

    Article  CAS  Google Scholar 

  6. Weiland M, Daro A, David C (1995) Polym Degrad Stab 48:275–289

    Article  CAS  Google Scholar 

  7. Solaro R, Corti A, Chiellini E (1998) J Envi Poly Deg 6:203–208

    Article  CAS  Google Scholar 

  8. Bonhommea S, Cuerb A, Delortb AM, Lemairea J, Sancelmeb M, Scott G (2003) Polym Degrad Stab 81:441–452

    Article  CAS  Google Scholar 

  9. Albertsson AC, Karlsson S (1995) Acta Polym 46:114–123

    Article  CAS  Google Scholar 

  10. Kawai F, Shibata M, Yokoyama S, Maeda S, Tada K, Hayashi S (1999) Macromol Symp 144:73–84

    CAS  Google Scholar 

  11. Sebaa M, Servens C, Pouyet J (1993) J Appl Polym Sci 47:1897–1903

    Article  CAS  Google Scholar 

  12. Eyenga II, Focke WW, Prinsloo LC, Tolmay AT (2002) Macromol Symp 178:139–152

    Article  CAS  Google Scholar 

  13. ASTM standard D-6954-04 (2004) In: Annual book of ASTM standards. ASTM, Philadelphia, PA

  14. Koutny M, Sancelme M, Dabin C, Pichon N, Delort AM, Lemaire J (2006) Polym Degrad Stab 91:1495–1503

    Article  CAS  Google Scholar 

  15. Hakkarainen M, Albertsson AC, Karlsson S (1997) J Appl Polym Sci 66:959–967

    Article  CAS  Google Scholar 

  16. Krishna Sastry P, Satyanarayana D, Mohan Rao DV (1998) J Appl Polym Sci 70:2251–2257

    Article  Google Scholar 

  17. Alexandre M, Dubois P (2000) Mater Sci Eng 28:1–63

    Article  Google Scholar 

  18. Stotzky (1966) Can J Microbiol 12:1235–1246

    Google Scholar 

  19. Gopakumar TG, Lee JA, Kontopoulou M, Parent JS (2002) Polymer 43:5483–5491

    Article  CAS  Google Scholar 

  20. Qureshi FS, Amin MB, Maadhah AG, Hamid SH (1990) J Poly Eng 9:67–84

    CAS  Google Scholar 

  21. Serverini F, Gallo R, Landro LD, Pegoraro M Brambilla L, Tommasini M (2001) Polymer 42:3609–3625

    Article  Google Scholar 

  22. Grassie N, Scott G (1985) Polymer degradation and stabilisation. Cambridge University Press, Cambridge

    Google Scholar 

  23. Seal KL (1994) In: Griffin GJL (ed) Chemistry and Technology of Biodegradable Polymers, pp 116–134

  24. Erlandsson B, Karlsson S, Albertsson AC (1997) Polym Degrad Stab 55:231–245

    Article  Google Scholar 

  25. Bharadwaj RK (2001) Macromolecules 34:9189–9192

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Parthasarathy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reddy, M.M., Gupta, R.K., Gupta, R.K. et al. Abiotic Oxidation Studies of Oxo-biodegradable Polyethylene. J Polym Environ 16, 27–34 (2008). https://doi.org/10.1007/s10924-008-0081-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-008-0081-z

Keywords

Navigation