Skip to main content
Log in

Effect of Coconut, Sisal and Jute Fibers on the Properties of Starch/Gluten/Glycerol Matrix

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Coconut, sisal and jute fibers were added as reinforcement materials in a biodegradable polymer matrix comprised of starch/gluten/glycerol. The content of fibers used in the composites varied from 5% to 30% by weight of the total polymers (starch and gluten). Materials were processed in a Haake torque rheometer (120 °C, 50 rpm) for 6 min. The mixtures obtained were molded by heat compression and further characterized. Addition of lignocellulosic fibers in the matrix decreased the water absorption at equilibrium. The diffusion coefficient decreased sharply around 5% fiber concentration, and further fiber additions caused only small variations. The thermogravimetric (TG) analysis revealed improved thermal stability of matrix upon addition of fibers. The Young’s modulus and ultimate tensile strength increased with fiber content in the matrix. The storage modulus increased with increasing fiber content, whereas tanδ curves decreased, confirming the reinforcing effect of the fibers. Morphology of the composites analyzed under the scanning electron microscope (SEM) exhibited good interfacial adhesion between the matrix and the added fibers. Matrix degraded rapidly in compost, and addition of increased amounts of coconut fiber in the matrix caused a slowdown the biodegradability of the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lu YS, Weng LH, Zhang LN (2004) Biomacromolecules 5:1046–1051

    Article  CAS  Google Scholar 

  2. Zhang X, Do MD, Bilyk A (2007) Biomacromolecules 8:1881–1889

    Article  CAS  Google Scholar 

  3. Samir MASA, Alloin F, Sanchez JY, Dufresne A (2005) Biomacromolecules 6:612–626

    Article  CAS  Google Scholar 

  4. Mohanty AK, Misra M, Drzal LT (2002) J Polym Environ 10:19–26

    Article  CAS  Google Scholar 

  5. Silva RV, Spinelli D, Bose WW, Neto SC, Chierice GO, Tarpani JR (2006) Compos Sci Technol 66:1328–1335

    Article  CAS  Google Scholar 

  6. Wu QX, Sakabe H, Isobe S (2003) Ind Eng Chem Res 42:6765–6773

    Article  CAS  Google Scholar 

  7. van Soest JJG, Borger DB (1997) J Appl Polym Sci 64:631–644

    Article  Google Scholar 

  8. Mathew AP, Dufresne A (2002) Biomacromolecules 3:1101–1108

    Article  CAS  Google Scholar 

  9. Carvalho AJF, Curvelo AAS, Agnelli JMA (2002) Int J Polym Mater 51:647–660

    Article  Google Scholar 

  10. Torres FG, Arroyo OH, Gomez C (2007) J Thermoplast Compos Mater 20:207–223

    Article  CAS  Google Scholar 

  11. Beg MDH, Pickering KL, Weal SJ (2005) Mater Sci Eng, A 412:7–11

    Article  Google Scholar 

  12. American Society of Testing Materials (ASTM), ASTM E-104 (1985) Annual Book of ASTM Standards, Philadelphia

  13. American Society of Testing Materials (ASTM), ASTM D-638 M (1996) Annual Book of ASTM Standards, Philadelphia

  14. American Society of Testing Materials (ASTM), ASTM D-5023 (2001) Annual Book of ASTM Standards, Philadelphia

  15. Alvarez VA, Ruscekaite RA, Vázquez A (2003) J Compos Mater 37:1575–1588

    Article  CAS  Google Scholar 

  16. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford

    Google Scholar 

  17. Angles MN, Dufresne A (2000) Macromolecules 33:8344–8353

    Article  CAS  Google Scholar 

  18. Alvarez V, Vázquez A (2004) Polym Degrad Stab 84:13–21

    Article  CAS  Google Scholar 

  19. Alvarez V, Rodrigues E, Vázquez A (2006) J Therm Anal Calorim 85:383–389

    Article  CAS  Google Scholar 

  20. Lourdin D, Bizot H, Colonna P (1997) J Appl Polym Sci 63:1047–1053

    Article  CAS  Google Scholar 

  21. Corradini E, de Medeiros ES, Carvalho AJF, Curvelo AAS, Mattoso LHC (2006) J Appl Polym Sci 101:4133–4139

    Article  CAS  Google Scholar 

  22. Averous L, Fringant C, Moro L (2001) Polymer 42:6565–6572

    Article  CAS  Google Scholar 

  23. Styanarayana KG (1990) Essex 12:117–136

    Google Scholar 

  24. Salazar VLP, Leão AL (2006) Energ Agric 21:99–133

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Corn Products Brail Ltda for supplying the starch and gluten products used in this study. The financial and technical support provided by EMBRAPA/Labex CNPq, FINEP, FAPESP and ARS/USDA is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed H. Imam.

Additional information

Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may be suitable.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corradini, E., Imam, S.H., Agnelli, J.A.M. et al. Effect of Coconut, Sisal and Jute Fibers on the Properties of Starch/Gluten/Glycerol Matrix. J Polym Environ 17, 1–9 (2009). https://doi.org/10.1007/s10924-009-0115-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-009-0115-1

Keywords

Navigation