Skip to main content
Log in

Potassium Release Kinetics and Water Retention of Controlled-Release Fertilizers Based on Chitosan Hydrogels

  • ORIGINAL PAPER
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Controlled release fertilizer (CRF) hydrogels were prepared from poly(vinyl alcohol), poly(vinyl alcohol)/chitosan and chitosan using glutaraldehyde as a crosslinker. Intermolecular interactions of the CRF hydrogels were elucidated using FTIR. Water absorbency characteristics of the CRF hydrogels were also studied. It was found that the CRF hydrogels exhibited the equilibrium swelling ratio (SR) in the range 70–300%. The water retention of soil containing the CRF hydrogels was also examined. It was found that the CRF hydrogels increased the water retention of the soil. After 30 days, soil containing the PVA-, PVA/CS- and CS-hydrogels showed the water retention capacities of 25%, 10% and 4%, respectively. While the soil without the CRF hydrogel had already given off most of the water. The release behavior of potassium from the CRF hydrogels, both in deionized water and in soil, was investigated. In soil, the potassium release mechanism from the PVA- and PVA/CS-hydrogels were non-Fickian diffusion. On the other hand, the CS hydrogel showed, n value that was close to 1.0 corresponding to case II transport. In deionized water, all the CRF hydrogels showed small values of release exponent (n < 0.5) indicating a quasi-Fickian diffusion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marguerite R (2006) Prog Polym Sci 31:603

    Article  Google Scholar 

  2. Azab AK, Doviner V, Orkin B, Klein M, Srebnik M, Nissan A, Rubinstein AJ (2006) J Control Release 111:281

    Article  CAS  Google Scholar 

  3. Muzzarelli RAA, Morganti P, Morganti G, Palombo P, Palombo M, Biagini G (2007) Carbohyd Polym 70:274

    Article  CAS  Google Scholar 

  4. Lan W, Mingzhu L (2008) Carbohyd Polym 72:240

    Article  Google Scholar 

  5. Kathuria N, Tripathi A, Kar KK, Kumar A (2009) Acta Biomater 5:406

    Article  CAS  Google Scholar 

  6. Martino AD, Sittinger M, Risbud MV (2005) Biomaterials 26:5983

    Article  Google Scholar 

  7. Majeti NV, Kuma R (2000) React Funct Polym 46:1

    Article  Google Scholar 

  8. Mi FW, Kuan CY, Shyu SS, Lee ST, Chang SF (2000) Carbohyd Polym 41:389

    Article  CAS  Google Scholar 

  9. Matsumura S, Tomizawa N, Toki A, Nishikawa K, Toshima K (1999) Macromolecules 32:7753

    Article  CAS  Google Scholar 

  10. Mansur HS, Costa HS (2008) Chem Eng J 137:72

    Article  CAS  Google Scholar 

  11. Morita R, Honda R, Takahashi Y (2000) J Control Release 63:297

    Article  CAS  Google Scholar 

  12. Sokker HH, Abdel GAM, Gad YH, Aly AS (2009) Carbohyd Polym 75:222

    Article  CAS  Google Scholar 

  13. Tang YF, Du YM, Hu XW, Shi XW, Kennedy JF (2007) Carbohyd Polym 67:491

    Article  CAS  Google Scholar 

  14. Rui L, Mingzhu L, Lan W (2007) React Funct Polym 67:769

    Article  Google Scholar 

  15. Kaewpirom S, Boonsang S (2006) Eur Polym J 42:1609

    Article  CAS  Google Scholar 

  16. Jarosiewicz A, Tomaszewska M (2004) Desalination 163:247

    Article  Google Scholar 

  17. Sinha VR, Trehan A (2003) J Control Release 90:261

    Article  CAS  Google Scholar 

  18. Douglass FJ, Francis KS, John RS (2005) Forest Ecol Manag 214:28

    Article  Google Scholar 

  19. Lapasin R, Princl S (1995) Rheology of industrial polysaccharides: theory and application. Blackie Academic and Professional, New York

  20. Joseph NM, Sharma PK (2007) Afr J Pharm Pharmacol 1:10

    Google Scholar 

  21. AOAC (1990) Official methods of analysis, 15th edn. Association of Analytical Chemistry, Washington, DC

  22. Siepmann J, Peppas NA (2001) Adv Drug Deliver Rev 48:139

    Article  CAS  Google Scholar 

  23. Singh B (2007) Int J Pharm 334:1

    Article  CAS  Google Scholar 

  24. Bettini R, Colombo P, Peppas NA (1995) J Control Release 37:105

    Article  CAS  Google Scholar 

  25. El-Sherbiny IM, Lins RJ, Abdel-Bary EM, Harding DRK (2005) Eur Polym J 41:2584

    Article  CAS  Google Scholar 

  26. Shu XZ, Zhu KJ, Song W (2001) Int J Pharm 212:19

    Article  CAS  Google Scholar 

  27. Gorochovceva N, Makuska R (2004) Eur Polym J 40:685

    Article  CAS  Google Scholar 

  28. Jayakumar R, Prabaharan M, Reis RL, Mano JF (2005) Carbohyd Polym 62:142

    Article  CAS  Google Scholar 

  29. Cokgor EU, Oktay S, Tas DO, Zengin GE, Orhon D (2009) Bioresource Technol 100:380

    Article  CAS  Google Scholar 

  30. Bajpai AK, Giri A (2002) React Funct Polym 53:125

    Article  CAS  Google Scholar 

  31. Sankar C, Mishra B (2003) Acta Pharm 53:101

    CAS  Google Scholar 

  32. Pradhan R, Budhathoki U, Thapa P (2008) Kathmandu Univ J Sci Eng Technol 1:55

    Google Scholar 

Download references

Acknowledgements

Financial support from the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education is gratefully acknowledged. Acknowledgements also go to Faculty of Science, Burapha University and Rajamangala University of Technology Tawan-Ok Bangpra Campus. The authors also thank Dr. Siridech Boonsang for his priceless advisory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supranee Kaewpirom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jamnongkan, T., Kaewpirom, S. Potassium Release Kinetics and Water Retention of Controlled-Release Fertilizers Based on Chitosan Hydrogels. J Polym Environ 18, 413–421 (2010). https://doi.org/10.1007/s10924-010-0228-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0228-6

Keywords

Navigation