Skip to main content
Log in

Novel Biobased Polyurethanes Synthesized from Nontoxic Phenolic Diol Containing l-Tyrosine Moiety Under Green Media

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) have been accepted as ‘green’ alternatives to the organic solvents in a range of synthesis, catalysis and electrochemistry, because of their distinctive chemical and physical properties. In this investigation, N,N′-(pyromellitoyl)-bis-l-tyrosine dimethyl ester as a chiral bioactive diphenolic monomer was prepared in three steps. The polycondensation of this monomer with various aromatic and aliphatic diisocyanates such as 4,4′-methylene-bis-(4-phenylisocyanate) (6a), toluylene-2,4-diisocyanate (6b), isophorone diisocyanate (6c) and hexamethylene diisocyanate (6d) were carried out in the presence of tetrabutylammonium bromide as a molten IL under microwave irradiation conditions and was compared with polymerization in traditional solvent like N-methyl-2-pyrrolidone. The results show that IL efficiently absorbs microwave energy, thus leading to a very high heating rate. Thus IL method is safe and green since toxic and volatile organic solvents were eliminated. All of the novel poly(urethane-imides) (PUIs) showed good solubility in various organic solvents. The obtained new polymers were characterized with FT-IR, 1H-NMR, elemental and thermogravimetric analysis techniques. Thermogravimetric analysis (TGA) of two representative PUIs demonstrated that they are rather thermally stable. In vitro toxicity studies showed that the synthetic materials are biologically active and they are nontoxic to microbial growth then could be classified as bioactive and biodegradable compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ashida K (2007) Polyurethane and related foams, Chap. 5. Taylor & Francis Group, New York

    Google Scholar 

  2. Saad B, Hirt TD, Welti M, Uhlschmid GK, Neuenschwander P, Suter1 UW (1997) J Biomed Mater Res 36:65

    Google Scholar 

  3. Kiyotsukuri T, Minami S, Tsutsumi N, Sakai W (1996) Polym Int 39:83

    Article  Google Scholar 

  4. Labow RS, Meek E, Santerre JP (2001) Biomaterials 22:3025

    Article  CAS  Google Scholar 

  5. Kim YD, Kim SCH (1998) Polym Degrad Stab 62:343

    Article  CAS  Google Scholar 

  6. Chen MY, Ike M, Fujita M (2002) Environ Toxicol 17:80

    Article  CAS  Google Scholar 

  7. Nakagawa Y, Tayama S (2000) Arch Toxicol 74:99

    Article  CAS  Google Scholar 

  8. Kimberly AH, Natalie DM, Joachim K (1998) J Biomed Mater Res 41:443

    Article  Google Scholar 

  9. Pulapura S, Kohan J (1992) Biopolymers 32:411

    Article  CAS  Google Scholar 

  10. Parth NS, Rachel LM, Stephanie TL, Yang HY (2009) Polymer 50:2281

    Article  Google Scholar 

  11. Tangpasuthadol V, Shefer A, Yu CH, Zhou J, Kohan J (1997) J Appl Polym Sci 63:1441

    Article  CAS  Google Scholar 

  12. Suarez N, Laredo E, Bello A, Kohan J (1997) J Appl Polym Sci 63:1457

    Article  CAS  Google Scholar 

  13. Gupta AS, Lopina ST (2005) Polymer 46:2133

    Article  Google Scholar 

  14. Jack CH, Jose LC, Kenneth JK, Harold A, Kenneth SJ (1996) J Biomed Mater Res 31:35

    Article  Google Scholar 

  15. Tangpasuthadol V, Pendharkar SM, Peterson RC, Kohn J (2000) Biomaterials 21:2379

    Article  CAS  Google Scholar 

  16. Deligo H, Yalcınyuva T, Ozgumus S (2005) Eur Polym J 41:771

    Article  Google Scholar 

  17. Canrnstock MJ (1981) In: Edwards KN (ed) Urethane chemistry and applications, Chap. 1. ACS symposium series, vol 172. American Chemical Society, Washington, DC

  18. Farbis HJ (1979) Advances in urethane science and technology. Technomic Publishing Co., Inc, Westport, p 89

    Google Scholar 

  19. Zuo M, Xiang Q, Takeichi T (1998) Polymer 39:6883

    Article  CAS  Google Scholar 

  20. Yeganeh H, Barikani M, Khodabadi FN (2000) Eur Polym J 36:2207

    Article  CAS  Google Scholar 

  21. Yeganeh H, Shamekhi MA (2004) Polymer 45:359

    Article  CAS  Google Scholar 

  22. Nair PR, Nair CPR, Francis DJ (1998) J Polym Sci A 70:1483

    Article  Google Scholar 

  23. Zuo M, Takeichi T (1997) J Polym Sci A 35:3745

    Article  CAS  Google Scholar 

  24. Gnarajan TP, Nasar AS, Iyer NP, Radhakrishnan G (2001) J Polym Sci A 39:4236

    Article  Google Scholar 

  25. Chen J, Zhang J, Zhu T, Hua Z, Chen Q, Yu X (2001) Polymer 42:1493

    Article  CAS  Google Scholar 

  26. Mallakpour S, Shahmohammadi MH (2004) Polym Int 53:184

    Article  CAS  Google Scholar 

  27. Zuo M, Takeichi T (1999) Polymer 40:5153

    Article  CAS  Google Scholar 

  28. Mittal KL (ed) (2003) Polyimides and other high temperature polymers, vol. 2. VSP Publishers, Netherlands, pp 37–45

  29. Jiang B, Hao J, Wang W, Jiang L, Cai X (2001) J Appl Polym Sci 81:773

    Article  CAS  Google Scholar 

  30. Wang HS, Wu SP (1999) J Appl Polym Sci 74:1719

    Article  CAS  Google Scholar 

  31. Mallakpour S, Hajipour AR, Zamanlo MR (2002) Eur Polym J 38:475

    Article  CAS  Google Scholar 

  32. Mallakpour S, Yousefian H (2008) Polym Bull 60:191

    Article  CAS  Google Scholar 

  33. Ding J, Armstrong DW (2005) Chirality 17:281

    Article  CAS  Google Scholar 

  34. Mallakpour S, Rafiee Z (2007) Polymer 48:5530

    Article  CAS  Google Scholar 

  35. Lu J, Yan F, Texter J (2009) Prog Polym Sci 34:431

    Article  CAS  Google Scholar 

  36. Mallakpour S, Kowsari E (2005) J Polym Sci A 43:6545

    Article  CAS  Google Scholar 

  37. Mallakpour S, Sepehri S (2008) React Funct Polym 68:1459

    Article  CAS  Google Scholar 

  38. Khodaei MM, Khosropour AR, Ghozati K (2004) Tetrahedron Lett 45:3525

    Article  CAS  Google Scholar 

  39. Ranu BC, Dey SS, Hajra A (2003) Tetrahedron 59:2417

    Article  CAS  Google Scholar 

  40. Ranu BC, Dey SS (2003) Tetrahedron Lett 44:2865

    Article  CAS  Google Scholar 

  41. Pang Y, Xu H, Li X, Ding H, Cheng Y, Shi G, Jin L (2006) Electrochem Commun 8:1757

    Article  CAS  Google Scholar 

  42. Mallakpour S, Taghavi M (2008) J Appl Polym Sci 109:3603

    Article  CAS  Google Scholar 

  43. Mallakpour S, Taghavi M (2008) Polymer 49:3239

    Article  CAS  Google Scholar 

  44. Mallakpour S, Rafiee Z (2007) Eur Polym J 43:5017

    Article  CAS  Google Scholar 

  45. Mallakpour S, Taghavi M (2009) React Funct Polym 69:206

    Article  CAS  Google Scholar 

  46. Mallakpour S, Rafiee Z (2009) React Funct Polym 69:252

    Article  CAS  Google Scholar 

  47. Liao L, Zhang C, Gong S (2008) React Funct Polym 68:751

    Article  CAS  Google Scholar 

  48. Mallakpour S, Rafiee Z (2008) Iran Polym J 17:907

    CAS  Google Scholar 

  49. Mallakpour S, Shahmohammadi MH (2005) Iran Polym J 14:473

    CAS  Google Scholar 

  50. Mallakpour S, Kowsari E (2004) J Appl Polym Sci 93:2218

    Article  CAS  Google Scholar 

  51. Mallakpour S, Tirgir F, Sabzalian MR (2010) J Polym Res. doi: 10.1007/s10965-010-9427-z

  52. Ensafi AA, Mallakpour S, Doozandeh F, Allafchian AR, Tirgir F (2009) Anal Lett (accepted)

  53. Mythili CV, Retna M, Gopalakrishnan S (2004) Bull Mater Sci 27:235

    Article  CAS  Google Scholar 

  54. Hayes A, Bakand S, Winder C (2007) In: Marx U, Sandig V (eds) Drug testing in vitro: breakthroughs and trends in cell culture technology. Wiley-VCH, Berlin, pp 103–124

  55. Grima S, Bellon-Maurel V, Feuilloley P, Silvestre F (2002) J Polym Environ 8:183

    Article  Google Scholar 

  56. Darby RT, Kaplan AM (1968) Appl Microbiol 16:900

    CAS  Google Scholar 

  57. Evans DM, Levisohn I (1968) Int Biodeterior Bull 4:89

    CAS  Google Scholar 

  58. Lamba NMK, Woodhouse KA, Cooper SL (1998) Polyurethanes in biomedical applications. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgments

We wish to express our gratitude to the Research Affairs Division, Isfahan University of Technology (IUT), for partial financial support. Further financial support from National Elite Foundation (NEF), Iran Nanotechnology Initiative Council (INIC) and Center of Excellency in Sensors and Green Research (IUT) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shadpour Mallakpour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallakpour, S., Tirgir, F. & Sabzalian, M.R. Novel Biobased Polyurethanes Synthesized from Nontoxic Phenolic Diol Containing l-Tyrosine Moiety Under Green Media. J Polym Environ 18, 685–695 (2010). https://doi.org/10.1007/s10924-010-0234-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-010-0234-8

Keywords

Navigation